scholarly journals Unveiling the Hidden Diversity of Rock-Inhabiting Fungi: Chaetothyriales from China

2020 ◽  
Vol 6 (4) ◽  
pp. 187
Author(s):  
Wei Sun ◽  
Lei Su ◽  
Shun Yang ◽  
Jingzu Sun ◽  
Bingjie Liu ◽  
...  

Rock-inhabiting fungi (RIF) are nonlichenized fungi that naturally colonize rock surfaces and subsurfaces. The extremely slow growth rate and lack of distinguishing morphological characteristics of RIF resulted in a poor understanding on their biodiversity. In this study, we surveyed RIF colonizing historical stone monuments and natural rock formations from throughout China. Among over 1000 isolates, after preliminary delimitation using the internal transcribed spacer region (ITS) sequences, representative isolates belonging to Trichomeriaceae and Herpotrichiellaceae were selected for a combined analysis of ITS and the nuclear ribosomal large subunit (nucLSU) to determine the generic placements. Eight clades representing seven known genera and one new genus herein named as Anthracina were placed in Trichomeriaceae. While, for Herpotrichiellaceae, two clades corresponded to two genera: Cladophialophora and Exophiala. Fine-scale phylogenetic analyses using combined sequences of the partial actin gene (ACT), ITS, mitochondrial small subunit ribosomal DNA (mtSSU), nucLSU, the largest subunit of RNA polymerase II (RPB1), small subunit of nuclear ribosomal RNA gene (SSU), translation elongation factor (TEF), and β-tubulin gene (TUB) revealed that these strains represented 11 and 6 new species, respectively, in Trichomeriaceae and Herpotrichiellaceae. The 17 new species were described, illustrated for their morphologies and compared with similar taxa. Our study demonstrated that the diversity of RIF is surprisingly high and still poorly understood. In addition, a rapid strategy for classifying RIF was proposed to determine the generic and familial placements through preliminary ITS and nucLSU analyses, followed by combined analyses of five loci selected from ACT, ITS, mtSSU, nucLSU, RPB1, and/or the second subunit of RNA polymerase II gene (RPB2), SSU, TEF, and TUB regions to classify RIF to the species level.

MycoKeys ◽  
2021 ◽  
Vol 82 ◽  
pp. 33-56
Author(s):  
Long-Fei Fan ◽  
Renato Lúcio Mendes Alvarenga ◽  
Tatiana Baptista Gibertoni ◽  
Fang Wu ◽  
Yu-Cheng Dai

Samples of species close to Tremella fibulifera from China and Brazil are studied, and T. fibulifera is confirmed as a species complex including nine species. Five known species (T. cheejenii, T. fibulifera s.s., T. “neofibulifera”, T. lloydiae-candidae and T. olens) and four new species (T. australe, T. guangxiensis, T. latispora and T. subfibulifera) in the complex are recognized based on morphological characteristics, molecular evidence, and geographic distribution. Sequences of eight species of the complex were included in the phylogenetic analyses because T. olens lacks molecular data. The phylogenetic analyses were performed by a combined sequence dataset of the internal transcribed spacer (ITS) and the partial nuclear large subunit rDNA (nLSU), and a combined sequence dataset of the ITS, partial nLSU, the small subunit mitochondrial rRNA gene (mtSSU), the translation elongation factor 1-α (TEF1), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2). The eight species formed eight independent lineages with robust support in phylogenies based on both datasets. Illustrated description of the six species including Tremella fibulifera s.s., T. “neofibulifera” and four new species, and discussions with their related species, are provided. A table of the comparison of the important characteristics of nine species in the T. fibulifera complex and a key to the whitish species in Tremella s.s. are provided.


2021 ◽  
Vol 7 (10) ◽  
pp. 818
Author(s):  
Yan-Hong Mu ◽  
Jia-Rui Yu ◽  
Ting Cao ◽  
Xiang-Hua Wang ◽  
Hai-Sheng Yuan

The genus Hydnellum is an important group of stipitate hydnaceous fungi which can form ectomycorrhiza with many species of woody plants. In recent decades, the frequency and number of basidiocarps observed in China have been declining significantly. So far, however, we know little about the species diversity of Hydnellum in China. In this study, we conducted molecular phylogenetic analyses based on sections of multiple loci, including the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the small subunit of nuclear ribosomal RNA gene (SSU) and the second-largest subunit of RNA polymerase II gene (RPB2), as well as morphological studies, of collected samples of Hydnellum from China. We also inferred Maximum Likelihood and Bayesian phylogenies for the order Thelephorales from the dataset of the combined nLSU and ITS. This study has revealed the phylogenetic position of Hydnellum in the order Thelephorales, and phylogenetically confirmed ten major clades in Thelephorales; Twenty-nine taxa are proposed, described or reported, including 10 new subgenera (Hydnellum subgenus Hydnellum, subg. Caesispinosum, subg. Croceum, subg. Inflatum, subg. Rhizomorphum, subg. Scabrosum, subg. Spongiosum, subg. Subindufibulatum, subg. Violaceum and subg. Zonatum), 11 new species (Hydnellum atrorubrum, H. atrospinosum, H. bomiense, H. brunneorubrum, H. fibulatum, H. granulosum, H. inflatum, H. rubidofuscum, H. squamulosum, H. sulcatum and H. yunnanense), 3 newly recorded species (H. caeruleum, H. peckii and H. spongiosipes) and 5 notable specimens (Hydnellum sp 1, H. sp 2, H. sp 3, H. sp 4 and H. sp 5). A classification system based on the morphological characteristics (especially the hyphal structure types) and molecular analyses is proposed to accommodate most species in Hydnellum. The distinguishing characters of the subgenera and the new species with their closely related taxa are discussed. A key to the species of Hydnellum from China is provided.


Phytotaxa ◽  
2017 ◽  
Vol 317 (3) ◽  
pp. 199 ◽  
Author(s):  
CHANG-LIN ZHAO ◽  
MALKA SABA ◽  
ABDUL NASIR KHALID ◽  
JIE SONG ◽  
DONALD H. PFISTER

Heterobasidion amyloideopsis sp. nov., a new poroid wood-inhabiting species from Pakistan, is introduced based on a combination of molecular evidence and morphological characteristics. We generated sequences from the nuclear internal transcribed spacer regions (ITS) and the large subunit ribosomal RNA gene (LSU), the gene encoding the largest subunit of RNA polymerase II (RPB1) and the second subunit of RNA polymerase II (RPB2), focusing on two specimens from Pakistan. We performed phylogenetic analyses with maximum likelihood, maximum parsimony, and bayesian inference methods on two datasets (RPB1+RPB2 and ITS+nLSU+RPB1+RPB2). Both analyses supported the existence of the new species and showed that it formed a monophyletic group within the H. insulare complex as a sister to H. amyloideum. In addition to assessing the origin and divergence of this new species, we focused on the RPB1+RPB2 dataset to perform maximum likelihood based estimation and Bayesian binary analyses. Heterobasidion amyloideopsis is characterized by an annual habit, pileate basidiomata with a rust colored pileal surface, white, obtuse margin, a dimitic hyphal system with simple septate generative hyphae in the trama and clamp connections present on the contextual hyphae, amyloid skeletal hyphae and broadly ellipsoid, hyaline, fairly thick-walled, and asperulate basidiospores.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Liu ◽  
Lu-Lu Shen ◽  
Yan Wang ◽  
Tai-Min Xu ◽  
Genevieve Gates ◽  
...  

Cyanosporus is a cosmopolitan brown-rot fungal genus, recognizable by blue-tinted basidiocarps. Species in this genus were usually treated as belonging to the Postia caesia complex, however, recent phylogenetic analyses showed that this complex represents an independent genus. During further studies on Cyanosporus, five new species were discovered based on morphological features and molecular data. Phylogenetic analyses of Cyanosporus were conducted using the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF); illustrated descriptions of the new species are provided. In addition, fifteen species previously belonging to the Postia caesia complex are transferred to Cyanosporus and proposed as new combinations.


MycoKeys ◽  
2020 ◽  
Vol 71 ◽  
pp. 1-22
Author(s):  
Arifah Nur Aini ◽  
Suchada Mongkolsamrit ◽  
Wijanarka Wijanarka ◽  
Donnaya Thanakitpipattana ◽  
J. Jennifer Luangsa-ard ◽  
...  

Akanthomyces is a genus of invertebrate-pathogenic fungi from the family Cordycipitaceae (Ascomycota, Hypocreales). Its species occurs on two different types of hosts, spiders and insects, and in the latter case specifically Lepidoptera adults. Three new species of Akanthomyces, A. noctuidarum, A. pyralidarum, and A. tortricidarum occurring on adult moths from Thailand are proposed based on the differences of their morphological characteristics and molecular data. Phylogenetic analyses using a combined dataset, including the internal transcribed spacer regions, the large subunit of the ribosomal DNA, translation elongation factor 1-α, the largest subunit of RNA polymerase II, and the second largest subunit of RNA polymerase II, support the delimitation of these new species in Akanthomyces.


Phytotaxa ◽  
2021 ◽  
Vol 529 (1) ◽  
pp. 43-56
Author(s):  
YING GAO ◽  
JUTAMART MONKAI ◽  
ELENI GENTEKAKI ◽  
GUANG-CONG REN ◽  
DHANUSHKA N. WANASINGHE ◽  
...  

During a survey of saprobic microfungi in Southwest China, a coelomycetous fungus was found on dead twigs of Jasminum nudiflorum in Kunming, Yunnan Province. Based on a detailed morphological characterization coupled with multi-locus phylogenetic analyses, the fungus was identified as a new species in the genus Dothidea. Phylogenetic analyses using a combined matrix consisting of internal transcribed spacer (ITS), large subunit rRNA (LSU), small subunit rRNA (SSU), beta tubulin (tub2) and translation elongation factor-1 alpha (tef1-α) confirmed its placement in Dothideaceae and revealed a sister relationship to Dothidea eucalypti. The new species is characterized by pycnidial conidiomata, ampulliform or doliiform conidiogenous cells as well as aseptate, subglobose to ovoid, hyaline to pale-brown conidia. Comprehensive descriptions and illustrations are provided. Morphological characteristics of asexual morph taxa in Dothideaceae are also summarized and discussed.


Nematology ◽  
2016 ◽  
Vol 18 (9) ◽  
pp. 1063-1077 ◽  
Author(s):  
Somaye Alvani ◽  
Esmat Mahdikhani-Moghadam ◽  
Robin M. Giblin-Davis ◽  
Majid Pedram

Ektaphelenchus berbericus n. sp. was recovered from soil samples collected in eastern Iran and is described and illustrated based on morphological, morphometric and molecular data. The new species is characterised by having female body 512-691 μm long, lip region separated from rest of body by a shallow depression, lips separated and equally sized, 19-22 μm long stylet with wide lumen and lacking knobs or swellings at its base, cuticle with fine, but distinct transverse annuli and three lines in lateral field, excretory pore located at base of metacorpus (with slight variation in position), reproductive system monodelphic-prodelphic with spheroid and fine sperm cells inside spermatheca in some individuals and short post-vulval uterine sac (PUS), rectum and anus vestigial (invisible in few individuals), conical posterior body end (tail), narrowing at mid-point between anus and rounded tail tip, and males lacking. The new species is typologically similar to species belonging to four genera: Devibursaphelenchus, Ektaphelenchoides, Ektaphelenchus and Seinura, by a combination of morphological characters, e.g., gross morphology of stylet (lacking knobs or swellings at base), morphology of posterior body end (having short conical tail), PUS length, and having a vestigial anus and rectum in most individuals. In molecular phylogenetic analyses using sequences of the partial small subunit of the ribosomal RNA gene (SSU) and the D2-D3 expansion segments of the large subunit (LSU) ribosomal RNA gene, the new species is close to the Ektaphelenchoides/Cryptaphelenchus clade in an inferred SSU tree, and formed a clade with Ektaphelenchoides and Devibursaphelenchus spp. in a D2-D3 LSU tree. Further phylogenetic analyses using full length sequences of the internal transcribed spacer region (ITS) (= ITS1 + 5.8S + ITS2) corroborated results from the SSU and D2-D3 LSU trees, and the multilocus analyses using the combined SSU and LSU data placed the new species in a robustly supported clade with Ektaphelenchoides poinari and Devibursaphelenchus lini.


2021 ◽  
Vol 20 (1) ◽  
pp. 39-50
Author(s):  
Alexandra Pintye ◽  
Dániel G. Knapp

AbstractIn this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grasslands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the surface of autoclaved plant materials. Both species are first reported here as root-colonizing fungi.


Phytotaxa ◽  
2021 ◽  
Vol 520 (2) ◽  
pp. 184-194
Author(s):  
ALIREZA POURSAFAR ◽  
ESMAEIL HASHEMLOU ◽  
YOUBERT GHOSTA ◽  
FATEMEH SALIMI ◽  
MOHAMMAD JAVAN-NIKKHAH

Eggplant (Solanum melongena L.) is an economically important solanaceous crop in Iran with fruits used for food and traditional medicine. Despite the importance of Alternaria leaf spot and blight disease of solanaceous crops which is commonly seen in the fields, our knowledge about the causal agents on eggplant is limited. In this study, a set of large-spored Alternaria isolates was recovered from eggplant with leaf spot and blight symptoms in Somehsara region, Guilan province, Iran. All recovered isolates shared conspicuous morphological characteristics e.g. production of large, solitary conidia with several transverse disto- and eusepta and long tapering filamentous beak resemble those seen in the members of Alternaria section Porri. Multi-locus phylogenetic analyses based on the internal transcribed spacer region of nrDNA (ITS-rDNA) and parts of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), second largest subunit of RNA Polymerase II (RPB2), translation elongation factor 1-alpha (TEF1-α) and Alternaria major allergen (Alt a 1) gene sequences provided further evidence supporting not only their exact placement in Alternaria sect. Porri, but also in a distinct lineage representing a new species. The new species was named, described and illustrated herein as Alternaria guilanica sp. nov.. The phylogenetic and morphological comaprisions of the new species with other closely related species were also provided. Pathogenicity test conducted for the new strains revealed that they were capable to induce disease symptoms on eggplant leaves under greenhouse conditions, and re-isolation of the inoculated isolates confirmed Koch’s postulates.


2021 ◽  
Vol 7 (12) ◽  
pp. 1086
Author(s):  
Guang-Fu Mou ◽  
Tolgor Bau

Asproinocybe and Tricholosporum are not well known, and their placement at the family level remains undetermined. In this study, we conducted molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region (ITS) and nuc 28S rDNA (nrLSU), and a dataset with six molecular markers (ITS, LSU, RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), 18S nuclear small subunit ribosomal DNA (nrSSU), and translation elongation factor 1-alpha (TEF1-α)) using Bayesian (BA) and Maximum Likelihood (ML) methods, we found that the species of Asproinocybe and Tricholosporum formed an independent family-level clade (0.98/72). Asproinocybaceae fam. nov., a new family, is established here for accommodating this clade. Two new species, Asproinocybe sinensis and Tricholosporum guangxiense, from subtropical and tropical karst areas of China, are also described here.


Sign in / Sign up

Export Citation Format

Share Document