scholarly journals Asproinocybaceae fam. nov. (Agaricales, Agaricomycetes) for Accommodating the Genera Asproinocybe and Tricholosporum, and Description of Asproinocybe sinensis and Tricholosporum guangxiense sp. nov

2021 ◽  
Vol 7 (12) ◽  
pp. 1086
Author(s):  
Guang-Fu Mou ◽  
Tolgor Bau

Asproinocybe and Tricholosporum are not well known, and their placement at the family level remains undetermined. In this study, we conducted molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region (ITS) and nuc 28S rDNA (nrLSU), and a dataset with six molecular markers (ITS, LSU, RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), 18S nuclear small subunit ribosomal DNA (nrSSU), and translation elongation factor 1-alpha (TEF1-α)) using Bayesian (BA) and Maximum Likelihood (ML) methods, we found that the species of Asproinocybe and Tricholosporum formed an independent family-level clade (0.98/72). Asproinocybaceae fam. nov., a new family, is established here for accommodating this clade. Two new species, Asproinocybe sinensis and Tricholosporum guangxiense, from subtropical and tropical karst areas of China, are also described here.

2020 ◽  
Vol 44 (1) ◽  
pp. 206-239 ◽  
Author(s):  
Y.-F. Sun ◽  
D.H. Costa-Rezende ◽  
J.-H. Xing ◽  
J.-L. Zhou ◽  
B. Zhang ◽  
...  

Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s. lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.


2020 ◽  
Vol 6 (4) ◽  
pp. 187
Author(s):  
Wei Sun ◽  
Lei Su ◽  
Shun Yang ◽  
Jingzu Sun ◽  
Bingjie Liu ◽  
...  

Rock-inhabiting fungi (RIF) are nonlichenized fungi that naturally colonize rock surfaces and subsurfaces. The extremely slow growth rate and lack of distinguishing morphological characteristics of RIF resulted in a poor understanding on their biodiversity. In this study, we surveyed RIF colonizing historical stone monuments and natural rock formations from throughout China. Among over 1000 isolates, after preliminary delimitation using the internal transcribed spacer region (ITS) sequences, representative isolates belonging to Trichomeriaceae and Herpotrichiellaceae were selected for a combined analysis of ITS and the nuclear ribosomal large subunit (nucLSU) to determine the generic placements. Eight clades representing seven known genera and one new genus herein named as Anthracina were placed in Trichomeriaceae. While, for Herpotrichiellaceae, two clades corresponded to two genera: Cladophialophora and Exophiala. Fine-scale phylogenetic analyses using combined sequences of the partial actin gene (ACT), ITS, mitochondrial small subunit ribosomal DNA (mtSSU), nucLSU, the largest subunit of RNA polymerase II (RPB1), small subunit of nuclear ribosomal RNA gene (SSU), translation elongation factor (TEF), and β-tubulin gene (TUB) revealed that these strains represented 11 and 6 new species, respectively, in Trichomeriaceae and Herpotrichiellaceae. The 17 new species were described, illustrated for their morphologies and compared with similar taxa. Our study demonstrated that the diversity of RIF is surprisingly high and still poorly understood. In addition, a rapid strategy for classifying RIF was proposed to determine the generic and familial placements through preliminary ITS and nucLSU analyses, followed by combined analyses of five loci selected from ACT, ITS, mtSSU, nucLSU, RPB1, and/or the second subunit of RNA polymerase II gene (RPB2), SSU, TEF, and TUB regions to classify RIF to the species level.


2021 ◽  
Vol 20 (1) ◽  
pp. 39-50
Author(s):  
Alexandra Pintye ◽  
Dániel G. Knapp

AbstractIn this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grasslands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the surface of autoclaved plant materials. Both species are first reported here as root-colonizing fungi.


2021 ◽  
Vol 20 (8) ◽  
pp. 941-951
Author(s):  
Janusz Błaszkowski ◽  
Piotr Niezgoda ◽  
Edward Meller ◽  
Paweł Milczarski ◽  
Szymon Zubek ◽  
...  

AbstractPhylogenetic analyses of sequences of the nuc rDNA small subunit (18S), internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), and large subunit (28S) region (= 18S-ITS-28S), as well as sequences of this region concatenated with sequences of the largest subunit of RNA polymerase II (RPB1) gene, proved that the species originally described as Acaulospora polonica (phylum Glomeromycota) represents a new genus and a new family of the ancient order Archaeosporales, here introduced into the Glomeromycota under the names Polonospora and Polonosporaceae, respectively. The phylogenetic analyses and BLASTn queries also indicated that the Polonosporaceae with P. polonica comb. nov. still contains several morphologically undescribed taxa at the ranks of genus and species, which have a worldwide distribution.


Phytotaxa ◽  
2021 ◽  
Vol 520 (2) ◽  
pp. 137-154
Author(s):  
HUI-JING XIE ◽  
CHUN-XIA ZHANG ◽  
MING-XIA HE ◽  
ZHI-QUN LIANG ◽  
XIAO-HUA DENG ◽  
...  

Buchwaldoboletus xylophilus and Phlebopus portentosus (Boletales) are two non-ectomycorrhizal boletes, which are widely reported in tropical Asia. However, there is little information available about the taxonomy of these two boletes. Here, B. xylophilus and P. portentosus are redescribed based on morphology and molecular phylogenetic analyses of DNA sequences from nuclear 28S rDNA (28S), nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), translation elongation factor 1-α gene (TEF1) and the RNA polymerase II second largest subunit gene (RPB2). Detailed descriptions, color photos of fresh basidiomata, and line-drawings of microscopic features of the two taxa are presented.


Phytotaxa ◽  
2015 ◽  
Vol 204 (4) ◽  
pp. 287 ◽  
Author(s):  
Zhu L. Yang ◽  
Jiao Qin ◽  
Chengfeng Xia ◽  
Qun Hu ◽  
Qing-Qing Li

A new species of Ophiocordycipitaceae, Ophiocordyceps highlandensis, from southwestern China is described using morphological and molecular evidence. It is morphologically characterized by the combination of the following characters: dark-brown to blackish stromata on larvae of Scarabaeidae, fully immersed perithecia with non-protruding ostioles, 3-septate filiform ascospores breaking easily into four part-spores (20) 33–55 × 1.5–2 μm and a hymeniform cortex layer of stipe. Molecular phylogenetic analyses using DNA nucleotide sequences of the nuclear ribosomal small subunit, and the genes encoding the largest subunit of RNA polymerase II and the second-largest subunit of RNA polymerase II indicated that O. highlandensis was related to O. konnoana, O. barnesii, O. nigrella, O. ravenelii and O. superficialis. Ophiocordyceps highlandensis and its related species were all characterized by dark-brown stromata and an affinity for melolonthid larval hosts. A description, line drawings, phylogenetic placement and comparison with allied taxa are presented.


Phytotaxa ◽  
2021 ◽  
Vol 513 (2) ◽  
pp. 129-140
Author(s):  
YUAN S. LIU ◽  
JIAN-KUI LIU ◽  
PETER E. MORTIMER ◽  
SAISAMORN LUMYONG

Amanita submelleialba sp. nov. in section Amanita, is described from northern Thailand based on both multi-gene phylogenetic analysis and morphological evidences. It is characterized by having small to medium-sized basidiomata; a yellow to yellowish pale pileus covering pyramidal to subconical, white to yellow white volval remnants; globose stipe base covered conical, white to yellow white volval remnants; fugacious subapical annulus; and absent clamps. Multi-gene phylogenetic analyses based on partial nuclear rDNA internal transcribed spacer region (ITS), partial nuclear rDNA larger subunit region (nrLSU), RNA polymerase II second largest subunit (RPB2), partial translation elongation factor 1-alpha (TEF1-α) and beta-tubulin gene (TUB) indicated that A. submelleialba clustered together with A. elata and A. mira, but represented as a distinct lineage from other extant species in section Amanita. The detailed morphological characteristics, line-drawing illustration and comparisons with morphologically similar taxa are provided.


MycoKeys ◽  
2021 ◽  
Vol 82 ◽  
pp. 33-56
Author(s):  
Long-Fei Fan ◽  
Renato Lúcio Mendes Alvarenga ◽  
Tatiana Baptista Gibertoni ◽  
Fang Wu ◽  
Yu-Cheng Dai

Samples of species close to Tremella fibulifera from China and Brazil are studied, and T. fibulifera is confirmed as a species complex including nine species. Five known species (T. cheejenii, T. fibulifera s.s., T. “neofibulifera”, T. lloydiae-candidae and T. olens) and four new species (T. australe, T. guangxiensis, T. latispora and T. subfibulifera) in the complex are recognized based on morphological characteristics, molecular evidence, and geographic distribution. Sequences of eight species of the complex were included in the phylogenetic analyses because T. olens lacks molecular data. The phylogenetic analyses were performed by a combined sequence dataset of the internal transcribed spacer (ITS) and the partial nuclear large subunit rDNA (nLSU), and a combined sequence dataset of the ITS, partial nLSU, the small subunit mitochondrial rRNA gene (mtSSU), the translation elongation factor 1-α (TEF1), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2). The eight species formed eight independent lineages with robust support in phylogenies based on both datasets. Illustrated description of the six species including Tremella fibulifera s.s., T. “neofibulifera” and four new species, and discussions with their related species, are provided. A table of the comparison of the important characteristics of nine species in the T. fibulifera complex and a key to the whitish species in Tremella s.s. are provided.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Su ◽  
Hua Zhu ◽  
Yongchun Niu ◽  
Yaxi Guo ◽  
Xiaopeng Du ◽  
...  

Abstract The genera Kernia and Acaulium comprise species commonly isolated from dung, soil, decaying meat and skin of animal. The taxonomy of these fungi has been controversial and relies mainly on morphological criteria. With the aim to clarify the taxonomy and phylogeny of these fungi, we studied all the available ex-type strains of a large set of species by means of morphological and molecular phylogenetic analyses. Phylogenetic analysis of the partial internal transcribed spacer region (ITS) and the partial 28S rDNA (LSU) showed that the genera Kernia and Acaulium were found to be separated in two distinct lineages in Microascaceae. Based on morphological characters and multilocus phylogenetic analysis of the ITS, LSU, translation elongation factor 1α and β-tubulin genes, the species in Kernia and Acaulium were well separated and two new combinations are introduced, i.e. Acaulium peruvianum and Acaulium retardatum, a new species of Kernia is described, namely Kernia anthracina. Descriptions of the phenotypic features and molecular phylogeny for identification are discussed for accepted species in two genera in this study.


Phytotaxa ◽  
2021 ◽  
Vol 520 (2) ◽  
pp. 184-194
Author(s):  
ALIREZA POURSAFAR ◽  
ESMAEIL HASHEMLOU ◽  
YOUBERT GHOSTA ◽  
FATEMEH SALIMI ◽  
MOHAMMAD JAVAN-NIKKHAH

Eggplant (Solanum melongena L.) is an economically important solanaceous crop in Iran with fruits used for food and traditional medicine. Despite the importance of Alternaria leaf spot and blight disease of solanaceous crops which is commonly seen in the fields, our knowledge about the causal agents on eggplant is limited. In this study, a set of large-spored Alternaria isolates was recovered from eggplant with leaf spot and blight symptoms in Somehsara region, Guilan province, Iran. All recovered isolates shared conspicuous morphological characteristics e.g. production of large, solitary conidia with several transverse disto- and eusepta and long tapering filamentous beak resemble those seen in the members of Alternaria section Porri. Multi-locus phylogenetic analyses based on the internal transcribed spacer region of nrDNA (ITS-rDNA) and parts of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), second largest subunit of RNA Polymerase II (RPB2), translation elongation factor 1-alpha (TEF1-α) and Alternaria major allergen (Alt a 1) gene sequences provided further evidence supporting not only their exact placement in Alternaria sect. Porri, but also in a distinct lineage representing a new species. The new species was named, described and illustrated herein as Alternaria guilanica sp. nov.. The phylogenetic and morphological comaprisions of the new species with other closely related species were also provided. Pathogenicity test conducted for the new strains revealed that they were capable to induce disease symptoms on eggplant leaves under greenhouse conditions, and re-isolation of the inoculated isolates confirmed Koch’s postulates.


Sign in / Sign up

Export Citation Format

Share Document