scholarly journals Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast, Glaciozyma antarctica PI12

2021 ◽  
Vol 7 (7) ◽  
pp. 528
Author(s):  
Nur Athirah Yusof ◽  
Noor Haza Fazlin Hashim ◽  
Izwan Bharudin

Psychrophilic organisms possess several adaptive strategies which allow them to sustain life at low temperatures between −20 to 20 °C. Studies on Antarctic psychrophiles are interesting due to the multiple stressors that exist on the permanently cold continent. These organisms produce, among other peculiarities, cold-active enzymes which not only have tremendous biotechnological potential but are valuable models for fundamental research into protein structure and function. Recent innovations in omics technologies such as genomics, transcriptomics, proteomics and metabolomics have contributed a remarkable perspective of the molecular basis underpinning the mechanisms of cold adaptation. This review critically discusses similar and different strategies of cold adaptation in the obligate psychrophilic yeast, Glaciozyma antarctica PI12 at the molecular (genome structure, proteins and enzymes, gene expression) and physiological (antifreeze proteins, membrane fluidity, stress-related proteins) levels. Our extensive studies on G. antarctica have revealed significant insights towards the innate capacity of- and the adaptation strategies employed by this psychrophilic yeast for life in the persistent cold. Furthermore, several cold-active enzymes and proteins with biotechnological potential are also discussed.

3 Biotech ◽  
2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Megha Kumari ◽  
Srichandan Padhi ◽  
Swati Sharma ◽  
Loreni Chiring Phukon ◽  
Sudhir P. Singh ◽  
...  

Polar Biology ◽  
2019 ◽  
Vol 42 (3) ◽  
pp. 541-553 ◽  
Author(s):  
Clemente Michael Vui Ling Wong ◽  
Sook Yee Boo ◽  
Christopher Lok Yung Voo ◽  
Nursyafiqi Zainuddin ◽  
Nazalan Najimudin

2016 ◽  
Vol 10 (1) ◽  
pp. 157-168 ◽  
Author(s):  
Salimeh Mohammadi ◽  
Sepideh Parvizpour ◽  
Jafar Razmara ◽  
Farah Diba Abu Bakar ◽  
Rosli Md Illias ◽  
...  

Polar Biology ◽  
2019 ◽  
Vol 42 (3) ◽  
pp. 555-555
Author(s):  
Clemente Michael Vui Ling Wong ◽  
Sook Yee Boo ◽  
Christopher Lok Yung Voo ◽  
Nursyafiqi Zainuddin ◽  
Nazalan Najimudin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

AbstractDetermining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


2007 ◽  
Vol 58 (6) ◽  
pp. 470 ◽  
Author(s):  
P. Moolhuijzen ◽  
D. S. Dunn ◽  
M. Bellgard ◽  
M. Carter ◽  
J. Jia ◽  
...  

Genome sequencing and the associated bioinformatics is now a widely accepted research tool for accelerating genetic research and the analysis of genome structure and function of wheat because it leverages similar work from other crops and plants. The International Wheat Genome Sequencing Consortium addresses the challenge of wheat genome structure and function and builds on the research efforts of Professor Bob McIntosh in the genetics of wheat. Currently, expressed sequence tags (ESTs; ~500 000 to date) are the largest sequence resource for wheat genome analyses. It is estimated that the gene coverage of the wheat EST collection is ~60%, close to that of Arabidopsis, indicating that ~40% of wheat genes are not represented in EST collections. The physical map of the D-genome donor species Aegilops tauschii is under construction (http://wheat.pw.usda.gov/PhysicalMapping). The technologies developed in this analysis of the D genome provide a good model for the approach to the entire wheat genome, namely compiling BAC contigs, assigning these BAC contigs to addresses in a high resolution genetic map, filling in gaps to obtain the entire physical length of a chromosome, and then large-scale sequencing.


2021 ◽  
pp. 127099
Author(s):  
Saba Miri ◽  
Seyyed Mohammadreza Davoodi ◽  
Thomas Robert ◽  
Satinder Kaur Brar ◽  
Richard Martel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document