scholarly journals Novel Antioxidants and α-Glycosidase and Protein Tyrosine Phosphatase 1B Inhibitors from an Endophytic Fungus Penicillium brefeldianum F4a

2021 ◽  
Vol 7 (11) ◽  
pp. 913
Author(s):  
Yan Bai ◽  
Ping Yi ◽  
Songya Zhang ◽  
Jiangchun Hu ◽  
Huaqi Pan

Oxidative stress plays a very important role in the progression of diabetes and its complications. A therapeutic agent that is both antidiabetic and antioxidant would be the preferred choice for the treatment of diabetes. The crude extract of the endophytic fungus Penicillium brefeldianum F4a has significant antioxidant and α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) inhibition activities. Chemical investigation of P. brefeldianum F4a using an activity-guided isolation led to the discovery of three new compounds called peniorcinols A–C (1–3) along with six known compounds: penialidins A (4), penialidin F (5), myxotrichin C (6), riboflavin (7), indole-3-acetic acid (8), and 2-(4-hydroxy-2-methoxy-6-methylphenyl) acetic acid (9). Their chemical structures were established by their NMR and HRESIMS. The absolute configurations of 1 and 3 were determined by experimental and calculated electronic circular dichroism (ECD). Their antioxidant activities were evaluated by DPPH• and ABTS•+ scavenging assays. Compounds 1–6 and 8–9 showed moderate to strong free radical scavenging activities. Significantly, 4–6 exhibited more potent ABTS•+ scavenging activity than that of the positive control. Their α-glycosidase and PTP1B inhibition activities were tested. Among them, compound 3 showed α-glucosidase inhibition activity, and compounds 7 and 8 showed PTP1B inhibitory activity for the first time. It is worth noting that 3 and 8 displayed both antioxidant and α-glycosidase or PTP1B inhibition activities. These finding suggest that compounds 3 and 8 could be used as lead compounds to generate new potent drugs for the treatment of oxidative stress-related diabetes.

2012 ◽  
Vol 64 (6) ◽  
pp. 1978-1989 ◽  
Author(s):  
Pei-Suen Tsou ◽  
Nadine N. Talia ◽  
Adam J. Pinney ◽  
Ann Kendzicky ◽  
Sonsoles Piera-Velazquez ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 82
Author(s):  
Guoliang Zhou ◽  
Xiaomin Zhang ◽  
Mudassir Shah ◽  
Qian Che ◽  
Guojian Zhang ◽  
...  

Six undescribed polyhydroxy p-terphenyls, namely asperterphenyllins A–F, were isolated from an endophytic fungus Aspergillus candidus LDJ-5. Their structures were determined by NMR and MS data. Differing from the previously reported p-terphenyls, asperterphenyllin A represents the first p-terphenyl dimer connected by a C-C bond. Asperterphenyllin A displayed anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 53 μM and 21 μM, respectively. The anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of p-terphenyls are reported for the first time. Asperterphenyllin G exhibited cytotoxicity against nine cell lines with IC50 values ranging from 0.4 to 1.7 μM. Asperterphenyllin C showed antimicrobial activity against Proteus species with a MIC value of 19 μg/mL.


2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document