scholarly journals Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts

2012 ◽  
Vol 64 (6) ◽  
pp. 1978-1989 ◽  
Author(s):  
Pei-Suen Tsou ◽  
Nadine N. Talia ◽  
Adam J. Pinney ◽  
Ann Kendzicky ◽  
Sonsoles Piera-Velazquez ◽  
...  
2021 ◽  
Vol 7 (11) ◽  
pp. 913
Author(s):  
Yan Bai ◽  
Ping Yi ◽  
Songya Zhang ◽  
Jiangchun Hu ◽  
Huaqi Pan

Oxidative stress plays a very important role in the progression of diabetes and its complications. A therapeutic agent that is both antidiabetic and antioxidant would be the preferred choice for the treatment of diabetes. The crude extract of the endophytic fungus Penicillium brefeldianum F4a has significant antioxidant and α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) inhibition activities. Chemical investigation of P. brefeldianum F4a using an activity-guided isolation led to the discovery of three new compounds called peniorcinols A–C (1–3) along with six known compounds: penialidins A (4), penialidin F (5), myxotrichin C (6), riboflavin (7), indole-3-acetic acid (8), and 2-(4-hydroxy-2-methoxy-6-methylphenyl) acetic acid (9). Their chemical structures were established by their NMR and HRESIMS. The absolute configurations of 1 and 3 were determined by experimental and calculated electronic circular dichroism (ECD). Their antioxidant activities were evaluated by DPPH• and ABTS•+ scavenging assays. Compounds 1–6 and 8–9 showed moderate to strong free radical scavenging activities. Significantly, 4–6 exhibited more potent ABTS•+ scavenging activity than that of the positive control. Their α-glycosidase and PTP1B inhibition activities were tested. Among them, compound 3 showed α-glucosidase inhibition activity, and compounds 7 and 8 showed PTP1B inhibitory activity for the first time. It is worth noting that 3 and 8 displayed both antioxidant and α-glycosidase or PTP1B inhibition activities. These finding suggest that compounds 3 and 8 could be used as lead compounds to generate new potent drugs for the treatment of oxidative stress-related diabetes.


2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


Author(s):  
Jiajia Zhang ◽  
Ning Wu ◽  
Dayong Shi

Background: The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. Methodology: We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. Results: We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. Conclusion: There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.


Sign in / Sign up

Export Citation Format

Share Document