scholarly journals Minimal Residual Disease in Multiple Myeloma: State of the Art and Applications in Clinical Practice

2020 ◽  
Vol 10 (3) ◽  
pp. 120
Author(s):  
Alessandro Gozzetti ◽  
Donatella Raspadori ◽  
Francesca Bacchiarri ◽  
Anna Sicuranza ◽  
Paola Pacelli ◽  
...  

Novel drugs have revolutionized multiple myeloma therapy in the last 20 years, with median survival that has doubled to up to 8–10 years. The introduction of therapeutic strategies, such as consolidation and maintenance after autologous stem cell transplants, has also ameliorated clinical results. The goal of modern therapies is becoming not only complete remission, but also the deepest possible remission. In this context, the evaluation of minimal residual disease by techniques such as next-generation sequencing (NGS) and next-generation flow (NGF) is becoming part of all new clinical trials that test drug efficacy. This review focuses on minimal residual disease approaches in clinical trials, with particular attention to real-world practices.

Author(s):  
Alessandro Gozzetti ◽  
Monica Bocchia

: Minimal residual disease (MRD) detection represents a great advancement in multiple myeloma. New drugs are now available that increase depth of response. The International Myeloma Working Group recommends the use of next-generation flow cytometry (NGF) or next-generation sequencing (NGS) to search for MRD in clinical trials. Best sensitivity thresholds have to be confirmed, as well as timing to detect it. MRD has proven as the best prognosticator in many trials and promises to enter also in clinical practice to guide future therapy.


2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Alejandro Medina ◽  
Noemi Puig ◽  
Juan Flores-Montero ◽  
Cristina Jimenez ◽  
M.-Eugenia Sarasquete ◽  
...  

Abstract Detecting persistent minimal residual disease (MRD) allows the identification of patients with an increased risk of relapse and death. In this study, we have evaluated MRD 3 months after transplantation in 106 myeloma patients using a commercial next-generation sequencing (NGS) strategy (LymphoTrack®), and compared the results with next-generation flow (NGF, EuroFlow). The use of different marrow pulls and the need of concentrating samples for NGS biased the applicability for MRD evaluation and favored NGF. Despite that, correlation between NGS and NGF was high (R2 = 0.905). The 3-year progression-free survival (PFS) rates by NGS and NGF were longer for undetectable vs. positive patients (NGS: 88.7% vs. 56.6%; NGF: 91.4% vs. 50%; p < 0.001 for both comparisons), which resulted in a 3-year overall survival (OS) advantage (NGS: 96.2% vs. 77.3%; NGF: 96.6% vs. 74.9%, p < 0.01 for both comparisons). In the Cox regression model, NGS and NGF negativity had similar results but favoring the latter in PFS (HR: 0.20, 95% CI: 0.09–0.45, p < 0.001) and OS (HR: 0.21, 95% CI: 0.06–0.75, p = 0.02). All these results reinforce the role of MRD detection by different strategies in patient prognosis and highlight the use of MRD as an endpoint for multiple myeloma treatment.


Author(s):  
Frederic E. Lecouvet ◽  
Marie-Christiane Vekemans ◽  
Thomas Van Den Berghe ◽  
Koenraad Verstraete ◽  
Thomas Kirchgesner ◽  
...  

AbstractBone imaging has been intimately associated with the diagnosis and staging of multiple myeloma (MM) for more than 5 decades, as the presence of bone lesions indicates advanced disease and dictates treatment initiation. The methods used have been evolving, and the historical radiographic skeletal survey has been replaced by whole body CT, whole body MRI (WB-MRI) and [18F]FDG-PET/CT for the detection of bone marrow lesions and less frequent extramedullary plasmacytomas.Beyond diagnosis, imaging methods are expected to provide the clinician with evaluation of the response to treatment. Imaging techniques are consistently challenged as treatments become more and more efficient, inducing profound response, with more subtle residual disease. WB-MRI and FDG-PET/CT are the methods of choice to address these challenges, being able to assess disease progression or response and to detect “minimal” residual disease, providing key prognostic information and guiding necessary change of treatment.This paper provides an up-to-date overview of the WB-MRI and PET/CT techniques, their observations in responsive and progressive disease and their role and limitations in capturing minimal residual disease. It reviews trials assessing these techniques for response evaluation, points out the limited comparisons between both methods and highlights their complementarity with most recent molecular methods (next-generation flow cytometry, next-generation sequencing) to detect minimal residual disease. It underlines the important role of PET/MRI technology as a research tool to compare the effectiveness and complementarity of both methods to address the key clinical questions.


Sign in / Sign up

Export Citation Format

Share Document