scholarly journals Characterization of the Endometrial MSC Marker Ectonucleoside Triphosphate Diphosphohydrolase-2 (NTPDase2/CD39L1) in Low- and High-Grade Endometrial Carcinomas: Loss of Stromal Expression in the Invasive Phenotypes

2021 ◽  
Vol 11 (5) ◽  
pp. 331
Author(s):  
Aitor Rodríguez-Martínez ◽  
Carla Trapero ◽  
August Vidal ◽  
Josep Maria Piulats ◽  
Inmaculada Gómez de Aranda ◽  
...  

Ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) has been described in human non-pathological endometrium in both epithelial and stromal components without changes along the cycle. It was identified as a stromal marker of basalis. In the present study, we aimed to evaluate NTPDase2 distribution, using immunolabeling and in situ enzyme activity approaches, in endometrial carcinoma (EC) at different tumor grades. NTPDase2 was present in tumor epithelial EC cells, as in the non-pathological endometria, but the expression underwent changes in subcellular distribution and also tended to decrease with the tumor grade. In stroma, NTPDase2 was identified exclusively at the tumor-myometrial junction but this expression was lost in tumors of invasive phenotype. We have also identified in EC samples the presence of the perivascular population of endometrial mesenchymal stem cells (eMSCs) positive for sushi domain containing 2 (SUSD2) and for NTPDase2, already described in non-tumoral endometrium. Our results point to NTPDase2 as a histopathological marker of tumor invasion in EC, with diagnostic relevance especially in cases of EC coexisting with other endometrial disorders, such as adenomyosis, which occasionally hampers the assessment of tumor invasion parameters.

2020 ◽  
Author(s):  
Elsa González‐Cubero ◽  
María Luisa González‐Fernández ◽  
Laura Gutiérrez‐Velasco ◽  
Eliezer Navarro‐Ramírez ◽  
Vega Villar‐Suárez

2021 ◽  
pp. 102341
Author(s):  
Rina Otsuka-Yamaguchi ◽  
Masaaki Kitada ◽  
Yasumasa Kuroda ◽  
Yoshihiro Kushida ◽  
Shohei Wakao ◽  
...  

2009 ◽  
Vol 132 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Erdal Karaoz ◽  
Ayça Aksoy ◽  
Selda Ayhan ◽  
Ayla Eker Sarıboyacı ◽  
Figen Kaymaz ◽  
...  

2021 ◽  
Author(s):  
Takeshi Kikuchi ◽  
Masuhiro Nishimura ◽  
Maki Hirata ◽  
Fuminori Tanihara ◽  
Natsuki Komori ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Sami G Almalki ◽  
Velidi Rao ◽  
Divya Pankajakshan ◽  
Devendra K Agrawal

Rationale Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent cells that have the potential to differentiate into different cell linages, and represent promising tools in various clinical applications. However, the molecular mechanisms that control the ability of ADMSCs to remodel 3-dimensional extracellular matrix (ECM) barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of ADMSCs to endothelial cells (ECs) in vitro . Methods MSCs were isolated from porcine abdominal adipose tissue, and characterized by positive staining for MSC markers, CD44, CD73, CD90, and negative staining for CD11b, CD34 and CD45. The plasticity of MSCs was detected by bi-lineage differentiation to osteocytes, and adipocytes. The mRNA transcripts for different MMPs and TIMPs and protein expression of EC markers were analyzed by RT-PCR and immunostaining. The enzyme activity and protein expression were also analyzed by gelatin zymography, ELISA, and Western blot. Results The differentiation of ADMSCs to ECs was confirmed by the positive staining and mRNA expression of the endothelial markers. The mRNA transcripts for MMP-2 and membrane type 1 MMP (MT1-MMP) was significantly increased by 2.5 and 2.0 fold, respectively, during the differentiation of MSCs into ECs. Western blot and ELISA showed an elevated MT1-MMP and MMP-2 expression. The enzyme activity of MMP-2 was also observed by gelatin zymography. Conclusion We demonstrated that porcine ADMSCs have the ability to differentiate into ECs, and this process involves the up-regulation of MMP-2 and MT1-MMP. The increase in the expression of MMP-2 and MT1-MMP may, at least partially, facilitate the change in morphology of MSCs by degrading the ECM barriers. These findings may provide a potential mechanism for the role of MMP2 and MT1-MMP in the differentiation of ADMSCs into ECs.


2019 ◽  
Vol 37 (6) ◽  
pp. 1419-1428
Author(s):  
Qian Liu ◽  
Yaxi Zhu ◽  
Jun Qi ◽  
Peter C. Amadio ◽  
Steven L. Moran ◽  
...  

Author(s):  
Neetu Singh ◽  
Umesh Pratap Verma ◽  
Rebecca Chowdhury ◽  
Archana Mishra

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1134
Author(s):  
Julia I. Khorolskaya ◽  
Daria A. Perepletchikova ◽  
Daniel V. Kachkin ◽  
Kirill E. Zhurenkov ◽  
Elga I. Alexander-Sinkler ◽  
...  

The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.


Author(s):  
Yipeng Du ◽  
Xiaoting Li ◽  
Wenying Yan ◽  
Zhaohua Zeng ◽  
Dunzheng Han ◽  
...  

ObjectiveRegenerative therapy using mesenchymal stem cells (MSC) is a promising therapeutic method for critical limb ischemia (CLI). To understand how the cells are involved in the regenerative process of limb ischemia locally, we proposed a metabolic protein labeling method to label cell proteomes in situ and then decipher the proteome dynamics of MSCs in ischemic hind limb.Methods and ResultsIn this study, we overexpressed mutant methionyl-tRNA synthetase (MetRS), which could utilize azidonorleucine (ANL) instead of methionine (Met) during protein synthesis in MSCs. Fluorescent non-canonical amino-acid tagging (FUNCAT) was performed to detect the utilization of ANL in mutant MSCs. Mice with hindlimb ischemia (HLI) or Sham surgery were treated with MetRSmut MSCs or PBS, followed by i.p. administration of ANL at days 0, 2 6, and 13 after surgery. FUNCAT was also performed in hindlimb tissue sections to demonstrate the incorporation of ANL in transplanted cells in situ. At days 1, 3, 7, and 14 after the surgery, laser doppler imaging were performed to detect the blood reperfusion of ischemic limbs. Ischemic tissues were also collected at these four time points for histological analysis including HE staining and vessel staining, and processed for click reaction based protein enrichment followed by mass spectrometry and bioinformatics analysis. The MetRSmut MSCs showed strong green signal in cell culture and in HLI muscles as well, indicating efficient incorporation of ANL in nascent protein synthesis. By 14 days post-treatment, MSCs significantly increased blood reperfusion and vessel density, while reducing inflammation in HLI model compared to PBS. Proteins enriched by click reaction were distinctive in the HLI group vs. the Sham group. 34, 31, 49, and 26 proteins were significantly up-regulated whereas 28, 32, 62, and 27 proteins were significantly down-regulated in HLI vs. Sham at days 1, 3, 7, and 14, respectively. The differentially expressed proteins were more pronounced in the pathways of apoptosis and energy metabolism.ConclusionIn conclusion, mutant MetRS allows efficient and specific identification of dynamic cell proteomics in situ, which reflect the functions and adaptive changes of MSCs that may be leveraged to understand and improve stem cell therapy in critical limb ischemia.


Sign in / Sign up

Export Citation Format

Share Document