scholarly journals From Island Biogeography to Conservation: A Multi-Taxon and Multi-Taxonomic Rank Approach in the Tuscan Archipelago

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 486
Author(s):  
Enrico Ruzzier ◽  
Leonardo Forbicioni ◽  
Rodolfo Gentili ◽  
Nicola Tormen ◽  
Olivia Dondina ◽  
...  

Investigating the drivers that support species richness (S) in insular contexts can give insights for the conservation of insular biodiversity. Our aim was to decouple the effect of drivers (island area, distance from mainland and habitat diversity) accounted in three hypotheses or a combination of them in explaining S in seven islands of the Tuscan Archipelago: Area (species–area relationship, SAR), area and distance from mainland (equilibrium hypothesis, EQH) and habitat (habitat diversity hypothesis, HDH). We used published and original datasets to assess S (except aliens) for 42 taxa (14 animal and 28 plant taxa) in each island, and we used S as the dependent variable and the drivers as covariates in regression models. In 31 taxa, the data supported one of the tested hypotheses or a combination of them, and the most commonly supported hypotheses were SAR (12 taxa) and EQH (10 taxa). The effect of the area was also evident in SAR + HDH (five taxa) and EQH + HDH (one taxon), making it the prevailing driver in explaining S. Since distances are relatively short, and three out of four islands are land-bridge islands, the effect of distance was significant for 12 taxa. The effects of habitat diversity were evident for just nine taxa. The multi-taxon approach allowed us to understand the differential effect of drivers among taxa in influencing S in a single archipelago. Moreover, the multi-taxonomic rank approach highlighted how the information contained within higher taxonomic ranks (e.g., Division) can be substantially different from that derived from lower ranks (e.g., Family). These insights are of particular importance from a conservation perspective of the archipelago’s biodiversity, and this approach can be transferred to mainland fragmented systems.

1998 ◽  
Vol 76 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Frédéric Médail ◽  
Éric Vidal

The effects of physiographic variables (area, isolation, elevation, and substrate) and habitat diversity on plant species richness and composition have been investigated on some Mediterranean islands (southeastern France). The number of species - area relationship is significant but there are more diverse vegetation patterns on smallest islands (area smaller than 3.5 ha and, ultimately, 0.2 ha). Although the species composition is positively correlated to the distance from the continent, the effect of isolation is not so obvious because of the small distance of these continental islands from the continent. Some islands nearest to shore show very different plant species composition, suggesting a nonselective plant dispersal through some narrow stretches of sea. Habitat diversity represents one of the major explanatory factors of the species richness; nevertheless, it is not possible to settle between the two hypotheses effect of habitat diversity versus effect of area per se because of the correlation between the two factors. Key words: Mediterranean islands, insular biogeography, number of species - area relationship, isolation, habitat diversity, islets.


2016 ◽  
Vol 283 (1829) ◽  
pp. 20160102 ◽  
Author(s):  
Ryan A. Chisholm ◽  
Tak Fung ◽  
Deepthi Chimalakonda ◽  
James P. O'Dwyer

MacArthur and Wilson's theory of island biogeography predicts that island species richness should increase with island area. This prediction generally holds among large islands, but among small islands species richness often varies independently of island area, producing the so-called ‘small-island effect’ and an overall biphasic species–area relationship (SAR). Here, we develop a unified theory that explains the biphasic island SAR. Our theory's key postulate is that as island area increases, the total number of immigrants increases faster than niche diversity. A parsimonious mechanistic model approximating these processes reproduces a biphasic SAR and provides excellent fits to 100 archipelago datasets. In the light of our theory, the biphasic island SAR can be interpreted as arising from a transition from a niche-structured regime on small islands to a colonization–extinction balance regime on large islands. The first regime is characteristic of classic deterministic niche theories; the second regime is characteristic of stochastic theories including the theory of island biogeography and neutral theory. The data furthermore confirm our theory's key prediction that the transition between the two SAR regimes should occur at smaller areas, where immigration is stronger (i.e. for taxa that are better dispersers and for archipelagos that are less isolated).


2009 ◽  
Vol 55 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Uri Roll ◽  
Lewi Stone ◽  
Shai Meiri

Israel's biological diversity has been praised as being particularly rich in relation to its size; however this assumption was never tested when taking into account the empirical form of the species-area relationship. Here we compared the species richness of different countries to see if the Israeli diversity is exceptionally rich when area is accurately accounted for. We compared richness of amphibians, birds, mammals, reptiles, flowering plants, conifers and cycads, and ferns in all the world's countries. We further tested the effects of mean latitude, altitude span, and insularity on species richness both for all world countries and just for Mediterranean countries. For all taxa and in all tests, Israel lies within the prediction intervals of the models. Out of 42 tests, Israel's residuals lie in the upper decile of positive residuals once: for reptiles, when compared to all world countries, taking all predicting factors into account. Using only countries larger than 1000 km2, Israel was placed as top residual when compared to other Mediterranean countries for mammals and reptiles. We therefore conclude that Israel's species richness does not significantly exceed the expected values for a country its size. This is true when comparing it to either world or just Mediterranean countries. Adding more predicting factors does not change this fact.


2018 ◽  
Vol 29 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Jouni Sorvari

Associations of island size and isolation on the occurrence and species richness of five wood ant species of the Formica rufa group (F. rufa, F. aquilonia, F. lugubris, F. polyctena and F. pratensis) was tested in the Lake Konnevesi archipelago in Central Finland. In addition, the species composition was compared to that of mainland forests of the same region. Island isolation had no associations with the wood ant occurrence in this archipelago, but for most species, increasing island size was positively associated with the occurrence probability. According to the findings among the five species, Formica lugubris is the best adapted for insular living. There was a positive species–area relationship as the species richness of wood ants increased with an increasing island size. The island community of wood ants was dominated by colonies of the monogynous (single queen) species whereas the mainland community was dominated by those of polygynous (multiple queen) species.


Author(s):  
Gabriele Gentile ◽  
Roberto Argano ◽  
Stefano Taiti

AbstractArea and environmental heterogeneity influence species richness in islands. Whether area or environmental heterogeneity is more relevant in determining species richness is a central issue in island biogeography. Several models have been proposed, addressing the issue, and they can be reconducted to three main hypotheses developed to explain the species-area relationship: (1) the area-per se hypothesis (known also as the extinction-colonisation equilibrium), (2) the random placement (passive sampling), and the (3) environmental heterogeneity (habitat diversity). In this paper, considering also the possible influence of geographic distance on island species richness, we explore the correlation between area, environmental heterogeneity, and species richness by using faunistic data of Oniscidea inhabiting the Pontine Islands, a group of five small volcanic islands and several islets in the Tyrrhenian Sea, located about 60 km from the Italian mainland. We found that the colonisation of large Pontine Islands may occur via processes independent of geographic distance which could instead be an important factor at a much smaller scale. Such processes may be driven by a combination of anthropogenic influences and natural events. Even in very small-size island systems, environmental heterogeneity mostly contributes to species richness. Environmental heterogeneity could influence the taxocenosis structure and, ultimately, the number of species of Oniscidea via direct and indirect effects, these last mediated by area which may or may not have a direct effect on species richness.


2001 ◽  
Vol 25 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Mark V. Lomolino

The species-area relationship (i.e., the relationship between area and the number of species found in that area) is one of longest and most frequently studied patterns in nature. Yet there remain some important and interesting questions on the nature of this relationship, its causality, quantification and application for both ecologists and conservation biologists. Traditionally, the species-area relationship describes the very general tendency for species number to increase with island area; a relationship whose slope declines (but remains positive) as area increases. The true relationship, however, may be much more complicated than this, and may in many cases approximate a sigmoidal relationship. On small islands, species number may vary independently of island area. Species richness then increases as we consider larger islands, but the curve eventually slows and asymptotes or levels off when richness equals that of the the source or mainland pool. The relationship may also include a secondary phase of increase in richness if island area becomes large enough to allow in situ speciation. Causal explanations for this relationship may, therefore, need to be multifactorial and include a range of processes from disturbance and stochastic variation in habitat quality on the very small islands, to ecological interactions, immigration, extinction and, finally, evolution on the larger islands.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20200108
Author(s):  
Debora S. Obrist ◽  
Patrick J. Hanly ◽  
Jeremiah C. Kennedy ◽  
Owen T. Fitzpatrick ◽  
Sara B. Wickham ◽  
...  

The classical theory of island biogeography , which predicts species richness using island area and isolation, has been expanded to include contributions from marine subsidies, i.e. subsidized island biogeography (SIB) theory . We tested the effects of marine subsidies on species diversity and population density on productive temperate islands, evaluating SIB predictions previously untested at comparable scales and subsidy levels. We found that the diversity of terrestrial breeding bird communities on 91 small islands (approx. 0.0001–3 km 2 ) along the Central Coast of British Columbia, Canada were correlated most strongly with island area, but also with marine subsidies. Species richness increased and population density decreased with island area, but isolation had no measurable influence. Species richness was negatively correlated with marine subsidy, measured as forest-edge soil δ 15 N. Density, however, was higher on islands with higher marine subsidy, and a negative interaction between area and subsidy indicates that this effect is stronger on smaller islands, offering some support for SIB. Our study emphasizes how subsidies from the sea can shape diversity patterns on islands and can even exceed the importance of isolation in determining species richness and densities of terrestrial biota.


Sign in / Sign up

Export Citation Format

Share Document