Hot-Spot Facts and Artifacts-Questioning Israel's Great Biodiversity

2009 ◽  
Vol 55 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Uri Roll ◽  
Lewi Stone ◽  
Shai Meiri

Israel's biological diversity has been praised as being particularly rich in relation to its size; however this assumption was never tested when taking into account the empirical form of the species-area relationship. Here we compared the species richness of different countries to see if the Israeli diversity is exceptionally rich when area is accurately accounted for. We compared richness of amphibians, birds, mammals, reptiles, flowering plants, conifers and cycads, and ferns in all the world's countries. We further tested the effects of mean latitude, altitude span, and insularity on species richness both for all world countries and just for Mediterranean countries. For all taxa and in all tests, Israel lies within the prediction intervals of the models. Out of 42 tests, Israel's residuals lie in the upper decile of positive residuals once: for reptiles, when compared to all world countries, taking all predicting factors into account. Using only countries larger than 1000 km2, Israel was placed as top residual when compared to other Mediterranean countries for mammals and reptiles. We therefore conclude that Israel's species richness does not significantly exceed the expected values for a country its size. This is true when comparing it to either world or just Mediterranean countries. Adding more predicting factors does not change this fact.

2019 ◽  
pp. 11-37
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

This chapter examines how biodiversity, the variety of life, is distributed across the globe and within local communities. It begins by considering some of the challenges associated with assessing biological diversity at different spatial scales. Then, three of the best-studied patterns in species richness are examined in detail—the species–area relationship, the distribution of species abundances, and the relationship between productivity and species richness. The chapter concludes with a detailed exploration of the most dramatic of Earth’s biodiversity patterns—the latitudinal diversity gradient. The above patterns constitute much of what community ecology seeks to explain about nature. Their study provides a foundation from which to explore mechanisms of species interactions, and to understand the processes that drive variation in species numbers and their distribution.


1998 ◽  
Vol 76 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Frédéric Médail ◽  
Éric Vidal

The effects of physiographic variables (area, isolation, elevation, and substrate) and habitat diversity on plant species richness and composition have been investigated on some Mediterranean islands (southeastern France). The number of species - area relationship is significant but there are more diverse vegetation patterns on smallest islands (area smaller than 3.5 ha and, ultimately, 0.2 ha). Although the species composition is positively correlated to the distance from the continent, the effect of isolation is not so obvious because of the small distance of these continental islands from the continent. Some islands nearest to shore show very different plant species composition, suggesting a nonselective plant dispersal through some narrow stretches of sea. Habitat diversity represents one of the major explanatory factors of the species richness; nevertheless, it is not possible to settle between the two hypotheses effect of habitat diversity versus effect of area per se because of the correlation between the two factors. Key words: Mediterranean islands, insular biogeography, number of species - area relationship, isolation, habitat diversity, islets.


2018 ◽  
Vol 29 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Jouni Sorvari

Associations of island size and isolation on the occurrence and species richness of five wood ant species of the Formica rufa group (F. rufa, F. aquilonia, F. lugubris, F. polyctena and F. pratensis) was tested in the Lake Konnevesi archipelago in Central Finland. In addition, the species composition was compared to that of mainland forests of the same region. Island isolation had no associations with the wood ant occurrence in this archipelago, but for most species, increasing island size was positively associated with the occurrence probability. According to the findings among the five species, Formica lugubris is the best adapted for insular living. There was a positive species–area relationship as the species richness of wood ants increased with an increasing island size. The island community of wood ants was dominated by colonies of the monogynous (single queen) species whereas the mainland community was dominated by those of polygynous (multiple queen) species.


2016 ◽  
Author(s):  
Andersonn Prestes

There is a common intuition in biology that strict laws are very difficult to be found. Still, there are recurrent patterns in nature, suggesting broad generalizations and understanding of phenomena. The problem is that many generalizations in biology, especially in the form of correlations, might be decoupled from causality, weakening their power of explanation. Here, I bring an example on the Species-Area Relationship (SAR). The SAR is a well-known generalization in biology. The recurrent pattern states a positive relationship between area size and species richness. Understanding the mechanisms why there is a correlation between area and diversity remains a major challenge. I suggest an explicitly focus on mechanistic explanations for the SAR. I propose to use the integration, comparison and interpretation of other (associated or secondary) natural patterns in the searching for causal explanations. Area per se might not account for causality in species diversification or absolute species richness in larger regions. Biotic and abiotic factors of a given area might be studied in order to discover the causal underpinnings of the SAR.


Author(s):  
A.A. Myers

Major hotspots of amphipod species richness and of species and generic endemicity can be recognized in shallow seas. Recognition of ‘hotspots’ for amphipods must take account of the species-area relationship but not of latitude. The richness and endemicity of amphipods in the Mediterranean Sea is shown to be high when compared with other shallow seas This indicates a long in situ evolutionary history and is therefore not compatible with the hypothesis that the Mediterranean fauna was extirpated in the late Miocene.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 646
Author(s):  
Simone Fattorini

The species–area relationship (SAR, i.e., the increase in species richness with area) is one of the most general ecological patterns. SARs can be used to calculate expected extinction rates following area (habitat) loss. Here, using data from Italian reserves, extinction rates were calculated for beetle groups with different feeding habits: Carabidae (terrestrial predators), Hydradephaga (aquatic predators), coprophagous Scarabaeoidea (dung feeders), phytophagous Scarabaeoidea (herbivores), and Tenebrionidae (detritivores). The importance of other factors besides area (namely latitude and elevation) was investigated. Reserve area was recovered as an important predictor of species richness in all cases. For Carabidae, Hydradephaga, and Tenebrionidae, elevation exerted a negative influence, whereas latitude had a negative influence on coprophagous Scarabaeoidea and Tenebrionidae, as a consequence of current and historical biogeographical factors. Extinction rates were higher for dung beetles, due to their dependence on large grazing areas, and Tenebrionidae, due to their low dispersal capabilities. The lower extinction rates predicted for Carabidae, phytophagous Scarabaeoidea, and Hydradephaga can be explained by their higher dispersal power. If other variables besides area are considered, extinction rates became more similar among groups. Extinction rates by area loss are always relatively low. Thus, in reserves with few species, many local extinctions might be unnoticed.


2009 ◽  
Vol 35 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Paulo A.V. Borges ◽  
Joaquín Hortal ◽  
Rosalina Gabriel ◽  
Nídia Homem

2011 ◽  
Vol 57 (3) ◽  
pp. 183-192 ◽  
Author(s):  
Yoni Gavish

Each evolutionary-independent province has its own mainland species area relationship (SPAR). When using the power law SPAR (S = cAz), separate mainland SPARs are parallel in a log-log space (similar z value), yet they differ in species density per unit area (c value). This implies that there are two main SPAR-based strategies to identify biodiversity hotspots. The first treats all mainland SPARs of all provinces as if they form one global SPAR. This is the strategy employed by Roll et al. (2009) when questioning Israel's high biodiversity. They concluded that Israel is not a global biodiversity hotspot. Their results may arise from the fact that Israel's province, the Palaearctic, is relatively poor. Therefore, countries from richer provinces, whose mainland SPAR lies above the Palaearctic SPAR, are identified as global hotspots. The second strategy is to construct different mainland SPARs for each province and identify the provincial hotspots. In this manuscript I ask whether Israel's biodiversity is high relative to other countries within its province. For six different taxa, I analyzed data for Palaearctic countries. For each taxon, I conducted a linear regression of species richness against the country's area, both log transformed. The studentized residuals were used to explore Israel's rank relative to all other Palaearctic countries. I found that Israel lies above the 95th percentile for reptiles and mammals and above the 90th percentile for birds. Therefore, within the Palaearctic province, Israel is indeed a biodiversity hotspot.


Sign in / Sign up

Export Citation Format

Share Document