scholarly journals Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 982
Author(s):  
Zhou Xue ◽  
Yang Zhou

Land-use cover is undergoing intense change under global climate change and rapid urbanization, especially in the Loess Plateau, where ecological restoration policies like Green for Grain Project (GFGP) have been vigorously implemented since the 1980s. The main objective of this study was to distinguish the difference of spatio-temporal variation of land-use change in the two study periods of 1980–2000 and 2000–2020 at the county scales. Geographically and temporally weighted regression (GTWR) was employed to handle both the spatial and temporal heterogeneity of the driving forces for land use change. The results showed that the quantity of construction land, woodland and grassland experienced continuous growth, but arable land declined substantially. The results of GTWR model showed that the dominant influencing factors of land-use change had temporal and spatial differences in the Loess Plateau. Specifically, the implementation of GFGP and precipitation accelerated the changes in arable land, grassland and woodland. For construction land, its growth was mainly promoted by gross domestic product (GDP) and population, both of which had more obvious positive effects in the last 20 years. The findings provide a scientific basis to put forward countermeasures emphasizing sustainable land use in the Loess Plateau.

2020 ◽  
Vol 12 (9) ◽  
pp. 3687 ◽  
Author(s):  
Siqin Tong ◽  
Gang Bao ◽  
Ah Rong ◽  
Xiaojun Huang ◽  
Yongbin Bao ◽  
...  

Land use/cover change (LUCC) is becoming one of the most important and interesting problems in the study of global environmental change. Identifying the spatiotemporal behavior and associated driving forces behind changes in land use is crucial for the regional sustainable utilization of land resources. In this study, we consider the four municipalities of China (Beijing, Tianjin, Shanghai, and Chongqing) and compare their spatiotemporal changes in land use from 1990 to 2015 by employing intensity analysis and barycenter migration models. We then discuss their driving forces. The results show that the largest reduction and increase variations were mainly concentrated in arable and construction land, respectively. The decrement and increment were the largest in Shanghai, followed by Beijing and Tianjin, and the least in Chongqing. Furthermore, the results of the barycenter migration model indicate that in addition to Beijing, the migration distances of construction land were longer than those of arable land in three other cities. Moreover, the application of intensity analysis revealed that the rate of land use change was also the greatest in Shanghai and the slowest in Chongqing during the whole study period, with all of their arable land being mainly transformed into construction land. The driving force analysis results suggest that the spatial and temporal patterns of land use change were the results of the socio-economic development, national policies, and major events. In other words, where there was a high rate of economic and population growth, the intensity of land use change was relatively large.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 82 ◽  
Author(s):  
Youcai Kang ◽  
Jianen Gao ◽  
Hui Shao ◽  
Yuanyuan Zhang

Climate and land-use change are the two main driving forces that affect watershed hydrological processes. Separately assessing their impacts on hydrology is important for land-use planning and water resource management. In this research, the SWAT (Soil and Water Assessment Tool) and statistical methods were applied to evaluate the effects of climate and land-use change on surface hydrology in the hilly-gully region of the Loess Plateau. The results showed that surface runoff and soil water presented a downward tendency, while evapotranspiration (ET) presented an upward tendency in the Yanhe watershed from 1982 to 2012. Climate is one the dominant factors that influence surface runoff, especially in flooding periods. The average contribution rate of surface runoff on stream flow accounted for 55%, of which the flooding period accounted for 40%. The runoff coefficient declined by 0.21 after 2002 with the land-use change of cropland transformed to grassland and forestland. The soil water exhibited great fluctuation along the Yanhe watershed. In the upstream region, the land-use was the driving force to decline soil water, which reduced the soil water by 51%. Along the spatial distribution, it converted from land-use change to climate variability from northwest to southeast. The ET was more sensitive to land-use change than climate variability in all sub-basins, and increased by 209% with vegetation restoration. To prevent the ecosystem degradation and maintain the inherent ecological functions of rivers, quantitative assessment the influence of climate variability and land-use change on hydrology is of great importance. Such evaluations can provide insight into the extent of land use/cover change on regional water balance and develop appropriate watershed management strategies on the Loess Plateau.


Sensor Review ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 844-856
Author(s):  
Zhenzhen Zhao ◽  
Jiandi Feng

Purpose The purpose of this paper is to analyze the characteristics of spatio-temporal dynamics and the evolution of land use change is essential for understanding and assessing the status and transition of ecosystems. Such analysis, when applied to Horqin sandy land, can also provide basic information for appropriate decision-making. Design/methodology/approach By integrating long time series Landsat imageries and geographic information system (GIS) technology, this paper explored the spatio-temporal dynamics and evolution-induced land use change of the largest sandy land in China from 1983 to 2016. Accurate and consistent land use information and land use change information was first extracted by using the maximum likelihood classifier and the post-classification change detection method, respectively. The spatio-temporal dynamics and evolution were then analyzed using three kinds of index models: the dynamic degree model to analyze the change of regional land resources, the dynamic change transfer matrix and flow direction rate to analyze the change direction, and the barycenter transfer model to analyze the spatial pattern of land use change. Findings The results indicated that land use in Horqin sandy land during the study period changed dramatically. Vegetation and sandy land showed fluctuating changes, cropland and construction land steadily increased, water body decreased continuously, and the spatial distribution patterns of land use were generally unbalanced. Vegetation, sandy land and cropland were transferred frequently. The amount of vegetation loss was the largest. Water body loss was 473.6 km2, which accounted for 41.7 per cent of the total water body. The loss amount of construction land was only 1.0 km2. Considerable differences were noted in the rate of gravity center migration among the land use types in different periods, and the overall rate of construction land migration was the smallest. Moreover, the gravity center migration rates of the water body and sandy land were relatively high and were related to the fragile ecological environment of Horqin sandy land. Originality/value The results not only confirmed the applicability and effectiveness of the combined method of remote sensing and GIS technology but also revealed notable spatio-temporal dynamics and evolution-induced land use change throughout the different time periods (1983-1990, 1990-2000, 2000-2010, 2010-2014, 2014-2016 and 1983-2016).


Sign in / Sign up

Export Citation Format

Share Document