scholarly journals The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1040
Author(s):  
Apolonia Witecka ◽  
Sebastian Kwiatkowski ◽  
Takao Ishikawa ◽  
Jakub Drozak

SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 726
Author(s):  
Philipp Rathert

NSD3 is one of six H3K36-specific lysine methyltransferases in metazoans, and the methylation of H3K36 is associated with active transcription. NSD3 is a member of the nuclear receptor-binding SET domain (NSD) family of histone methyltransferases together with NSD1 and NSD2, which generate mono- and dimethylated lysine on histone H3. NSD3 is mutated and hyperactive in some human cancers, but the biochemical mechanisms underlying such dysregulation are barely understood. In this review, the current knowledge of NSD3 is systematically reviewed. Finally, the molecular and functional characteristics of NSD3 in different tumor types according to the current research are summarized.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1147
Author(s):  
Thiebaut Charlène ◽  
Eve Louisane ◽  
Poulard Coralie ◽  
Le Romancer Muriel

PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.


2021 ◽  
Vol 11 (4) ◽  
pp. 308
Author(s):  
Valentina Bravatà ◽  
Walter Tinganelli ◽  
Francesco P. Cammarata ◽  
Luigi Minafra ◽  
Marco Calvaruso ◽  
...  

In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suxing Liu ◽  
Dong Liu ◽  
Ru Shen ◽  
Di Li ◽  
Qiyue Hu ◽  
...  

AbstractClinical success of IL-17/IL-23 pathway biologics for the treatment of moderate to severe psoriasis suggests that targeting RORγt, a master regulator for the proliferation and function of Th17 cells, could be an effective alternative. However, oral RORγ antagonists (VTP43742, TAK828) with high systemic exposure showed toxicity in phase I/II clinical trials and terminated development. To alleviate the potential safety concerns, identifying compounds with skin-restricted exposure amenable for topical use is of great interest. Systematic structure activity relationship study and multi-parameter optimization led to the discovery of a novel RORγ antagonist (SHR168442) with desired properties for a topical drug. It suppressed the transcription of IL-17 gene, leading to reduction of IL-17 cytokine secretion. It showed high exposure in skin, but low in plasma. Topical application of SHR168442 in Vaseline exhibited excellent efficacy in the imiquimod-induced and IL-23-induced psoriasis-like skin inflammation mouse models and correlated with the reduction of Th17 pathway cytokines, IL-6, TNFα and IL-17A. This work demonstrated restricted skin exposure of RORγ antagonist may provide a new topical treatment option as targeted therapeutics for mild to moderate psoriasis patients and may be suitable for the treatment of any other inflammatory disorders that are accessible locally.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Siju Zhang ◽  
Hongjiao Hao ◽  
Xiaonan Liu ◽  
Yingying Li ◽  
Xuan Ma ◽  
...  

AbstractSET domain group (SDG) proteins have been identified to be involved in histone modification and participate in diverse biological processes. Rice contains 41 SDG genes, however, most of which have not been functionally characterized. Here, we report the identification and functional investigation of rice SDG712 gene. Phylogenic analysis revealed that SDG712 belongs to the H3K9-specific SDG subclade. SDG712 is highly expressed in leaves during reproductive growth stage with obvious circadian rhythmic pattern. Mutation of SDG712 promotes rice flowering, while overexpression of SDG712 delays rice flowering. Gene expression analysis suggested that SDG712 acts downstream of Hd1, while acts upstream of Ehd1, Hd3a and RFT1. Subcellular localization assay demonstrated that SDG712 is localized in the nucleus. Chromatin immunoprecipitation (ChIP) assay showed that the H3K9me2 levels at Hd3a and RFT1 loci were increased in SDG712 overexpression transgenic plants, indicating that SDG712 may mediate the H3K9 di-methylation on these loci to repress rice flowering. Taken together, our findings demonstrated that SDG712 is a negative flowering regulatory gene in rice, and it delays flowering through repressing key flowering regulator gene Ehd1 and the florigen genes Hd3a and RFT1.


1996 ◽  
Vol 24 (4) ◽  
pp. 964-971 ◽  
Author(s):  
I. Chérel ◽  
P. Daram ◽  
F. Gaymard ◽  
C. Horeau ◽  
J.-B. Thibaud ◽  
...  

2021 ◽  
Author(s):  
Alice Costantini ◽  
Mari H Muurinen ◽  
Outi Mäkitie

In the last decade, the widespread use of massively-parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized. This review aims to describe the latest genetic findings in spondyloepiphyseal and spondyloepimetaphyseal dysplasias and in some monogenic forms of isolated short stature. Strategies on how to successfully characterize novel skeletal phenotypes with short stature and genetic approaches to detect and validate novel gene-disease correlations will be discussed in detail. Finally, novel genetic mechanisms in the field of skeletal diseases, including variants affecting miRNAs and disrupting the chromatin structure, will be described. In summary, we discuss the latest gene discoveries underlying skeletal diseases with short stature and emphasize the importance of characterizing novel molecular mechanisms for genetic counseling, optimal management of the disease and for therapeutic innovations.


2021 ◽  
Author(s):  
Isabel Cristina Vélez-Bermúdez ◽  
Wolfgang Schmidt

Abstract BackgroundCovalent modifications of core histonesgoverndownstream DNA-templated processes such as transcription by altering chromatin structure and function. Previously, we reported that the plant homeodomain protein ALFIN-LIKE6 (AL6), a bona fide histone reader that preferentially binds trimethylated lysin 4 on histone 3 (H3K4me3), is critical for recalibration of cellular phosphate (Pi) homeostasis and root hair elongation under Pi-deficient conditions. ResultsHere, we demonstrate that AL6 is also involved in the response of Arabidopsis seedlings to jasmonic acid (JA) during skotomorphogenesis, possibly by modulating chromatin dynamics that affect the transcriptional regulation of JA-responsivegenes. Dark-grown al6 seedlings showed a compromised reduction in hypocotyl elongation upon exogenously supplied JA, a response that was calibrated by the availability of Pi in the growth medium. A comparison of protein profiles between wild-type and al6 mutant seedlings using a quantitative Chromatin Enrichment for Proteomics (ChEP) approach,that we modified for plant tissue and designated ChEP-P (ChEP in Plants), yielded a comprehensive suite of chromatin-associated proteins and candidates that may be causative for the mutant phenotype. ConclusionsAltered abundance of proteins involved in chromatin organization in al6 seedlings suggests a role of AL6 in coordinating the deposition of histone variants upon perception of internal or environmental stimuli. Our study shows that ChEP-P is well suited to gain holistic insights into chromatin-related processes in plants. Data are available via ProteomeXchange with identifier PXD026541.


Sign in / Sign up

Export Citation Format

Share Document