scholarly journals Genetics and Cognitive Vulnerability to Sleep Deprivation in Healthy Subjects: Interaction of ADORA2A, TNF-α and COMT Polymorphisms

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1110
Author(s):  
Mégane Erblang ◽  
Catherine Drogou ◽  
Danielle Gomez-Merino ◽  
Arnaud Rabat ◽  
Mathias Guillard ◽  
...  

Several genetic polymorphisms differentiate between healthy individuals who are more cognitively vulnerable or resistant during total sleep deprivation (TSD). Common metrics of cognitive functioning for classifying vulnerable and resilient individuals include the Psychomotor Vigilance Test (PVT), Go/noGo executive inhibition task, and subjective daytime sleepiness. We evaluated the influence of 14 single-nucleotide polymorphisms (SNPs) on cognitive responses during total sleep deprivation (continuous wakefulness for 38 h) in 47 healthy subjects (age 37.0 ± 1.1 years). SNPs selected after a literature review included SNPs of the adenosine-A2A receptor gene (including the most studied rs5751876), pro-inflammatory cytokines (TNF-α, IL1-β, IL-6), catechol-O-methyl-transferase (COMT), and PER3. Subjects performed a psychomotor vigilance test (PVT) and a Go/noGo-inhibition task, and completed the Karolinska Sleepiness Scale (KSS) every 6 h during TSD. For PVT lapses (reaction time >500 ms), an interaction between SNP and SDT (p < 0.05) was observed for ADORA2A (rs5751862 and rs2236624) and TNF-α (rs1800629). During TSD, carriers of the A allele for ADORA2A (rs5751862) and TNF-α were significantly more impaired for cognitive responses than their respective ancestral G/G genotypes. Carriers of the ancestral G/G genotype of ADORA2A rs5751862 were found to be very similar to the most resilient subjects for PVT lapses and Go/noGo commission errors. Carriers of the ancestral G/G genotype of COMT were close to the most vulnerable subjects. ADORA2A (rs5751862) was significantly associated with COMT (rs4680) (p = 0.001). In conclusion, we show that genetic polymorphisms in ADORA2A (rs5751862), TNF-α (rs1800629), and COMT (rs4680) are involved in creating profiles of high vulnerability or high resilience to sleep deprivation. (NCT03859882).

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eric Chern-Pin Chua ◽  
Jason P. Sullivan ◽  
Jeanne F. Duffy ◽  
Elizabeth B. Klerman ◽  
Steven W. Lockley ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 555
Author(s):  
Mégane Erblang ◽  
Fabien Sauvet ◽  
Catherine Drogou ◽  
Michaël Quiquempoix ◽  
Pascal Van Beers ◽  
...  

This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).


2020 ◽  
pp. 003329411989989
Author(s):  
Janna Mantua ◽  
Allison J. Brager ◽  
Sara E. Alger ◽  
Folarin Adewle ◽  
Lillian Skeiky ◽  
...  

Objective Individuals vary in response to sleep loss: some individuals are “vulnerable” and demonstrate cognitive decrements following insufficient sleep, while others are “resistant” and maintain baseline cognitive capability. Physiological markers (e.g., genetic polymorphisms) have been identified that can predict relative vulnerability. However, a quick, cost-effective, and feasible subjective predictor tool has not been developed. The objective of the present study was to determine whether two factors—“subjective sleep need” and “subjective resilience”—predict cognitive performance following sleep deprivation. Methods Twenty-seven healthy, sleep-satiated young adults participated. These individuals were screened for sleep disorders, comorbidities, and erratic sleep schedules. Prior to 40 hours of in-laboratory total sleep deprivation, participants were questioned on their subjective sleep need and completed a validated resilience scale. During and after sleep deprivation, participants completed a 5-minute psychomotor vigilance test every 2 hours. Results Both subjective resilience and subjective sleep need individually failed to predict performance during sleep loss. However, these two measures interacted to predict performance. Individuals with low resilience and low sleep need had poorer cognitive performance during sleep loss. However, in individuals with medium or high resilience, psychomotor vigilance test performance was not predicted by subjective sleep need. Higher resilience may be protective against sleep loss-related neurobehavioral impairments in the context of subjective sleep need. Conclusions Following sleep loss (and recovery sleep), trait resilient individuals may outperform those with lower resiliency on real-world tasks that require continuous attention. Future studies should determine whether the present findings generalize to other, operationally relevant tasks and additional cognitive domains.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Qi ◽  
Bo-Zhi Li ◽  
Ying Zhang ◽  
Bei Pan ◽  
Yu-Hong Gao ◽  
...  

Background: Sleep deprivation can markedly influence vigilant attention that is essential to complex cognitive processes. The hypothalamus plays a critical role in arousal and attention regulation. However, the functional involvement of the hypothalamus in attentional impairments after total sleep deprivation (TSD) remains unclear. The purpose of this study is to investigate the alterations in hypothalamic functional connectivity and its association with the attentional performance following TSD.Methods: Thirty healthy adult males were recruited in the study. Participants underwent two resting-state functional magnetic resonance imaging (rs-fMRI) scans, once in rested wakefulness (RW) and once after 36 h of TSD. Seed-based functional connectivity analysis was performed using rs-fMRI for the left and right hypothalamus. Vigilant attention was measured using a psychomotor vigilance test (PVT). Furthermore, Pearson correlation analysis was conducted to investigate the relationship between altered hypothalamic functional connectivity and PVT performance after TSD.Results: After TSD, enhanced functional connectivity was observed between the left hypothalamus and bilateral thalamus, bilateral anterior cingulate cortex, right amygdala, and right insula, while reduced functional connectivity was observed between the left hypothalamus and bilateral middle frontal gyrus (AlphaSim corrected, P &lt; 0.01). However, significant correlation between altered hypothalamic functional connectivity and PVT performance was not observed after Bonferroni correction (P &gt; 0.05).Conclusion: Our results suggest that TSD can lead to disrupted hypothalamic circuits, which may provide new insight into neural mechanisms of attention impairments following sleep deprivation.


SLEEP ◽  
2020 ◽  
Author(s):  
Erika M Yamazaki ◽  
Caroline A Antler ◽  
Charlotte R Lasek ◽  
Namni Goel

Abstract Study Objectives The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). Methods In total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. Results TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. Conclusions PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A116-A116
Author(s):  
R A Muck ◽  
L Skeiky ◽  
M A Schmidt ◽  
B C Satterfield ◽  
J P Wisor ◽  
...  

Abstract Introduction There are substantial, phenotypical individual differences in the adverse impact of total sleep deprivation (TSD) on vigilant attention performance. Dopaminergic genotypes have been found to contribute to these phenotypical differences. Here we investigated the association between a single nucleotide polymorphism (SNP) of the dopamine receptor D2 (DRD2) gene, C957T (rs6277), on vigilant attention performance measured with the psychomotor vigilance test (PVT) in a laboratory TSD study. Methods N=46 healthy adults (ages 26.0±5.3y; 25 females) completed a 4-day in-laboratory study with a baseline day (10h time in bed: 22:00-08:00), a 38h TSD period, and a recovery day (10h time in bed: 22:00-08:00). DNA isolated from whole blood was assayed for DRD2 C957T genotype using real-time polymerase chain reaction. PVT performance was measured during TSD at 2-4h intervals, and analyzed for genotype using mixed-effects analysis of covariance of lapses of attention (RTs&gt;500ms). Results The genotype distribution in this sample - 28.3% C/C, 50.0% C/T, 21.7% T/T - was found to be in Hardy-Weinberg Equilibrium (X21=0.0008, p=0.98). As expected, there was a significant effect of time awake on PVT performance (F14,602=26.67, p&lt;0.001). There was a significant main effect of DRD2 genotype (F2,602=3.24, p=0.040) and a significant interaction of time awake by DRD2 genotype (F28,602=1.96, p=0.003). Subjects homozygous for the T allele showed greater impairment during extended wakefulness than carriers of the C allele. Genotype explained 7.6% of the variance in the PVT data observed during the 38h TSD period. Conclusion Subjects homozygous for the T allele of DRD2 C957T were considerably more vulnerable to TSD-induced PVT performance impairment than carriers of the C allele. A recent study showed that DRD2 C957T influences PVT performance in interaction with a SNP of the DAT1 gene. Here, DRD2 genotype was by itself also associated with PVT performance impairment during TSD. Support CDMRP awards W81XWH-16-1-0319 and W81XWH-18-1-0100.


2019 ◽  
Vol 4 (3) ◽  
pp. 47 ◽  
Author(s):  
Antonio ◽  
Kenyon ◽  
Horn ◽  
Jiannine ◽  
Carson ◽  
...  

The psychomotor vigilance test (PVT) measures one’s behavioral alertness. It is a visual test that involves measuring the speed at which a person reacts to visual stimuli over a fixed time frame (e.g., 5 min). The purpose of this study was to assess the effects of an energy drink on psychomotor vigilance as well as a simple measure of muscular endurance (i.e., push-ups). A total of 20 exercise-trained men (n = 11) and women (n = 9) (mean SD: age 32 7 years; height 169 10 cm; weight; 74.5 14.5 kg; percent body fat 20.3 6.2%; years of training 14 9; daily caffeine intake 463 510 mg) volunteered for this randomized, double-blind, placebo-controlled, crossover trial. In a randomized counterbalanced order, they consumed either the energy drink (ED) (product: BANG®, Weston Florida) or a similar tasting placebo drink (PL). In the second visit after a 1-week washout period, they consumed the alternate drink. A full 30 minutes post-consumption, they performed the following tests in this order: a 5-minute psychomotor vigilance test, three sets of push-ups, followed once more by a 5-minute psychomotor vigilance test. Reaction time was recorded. For the psychomotor vigilance test, lapses, false starts and efficiency score are also assessed. There were no differences between groups for the number of push-ups that were performed or the number of false starts during the psychomotor vigilance test. However, the ED treatment resulted in a significantly lower (i.e., faster) psychomotor vigilance mean reaction time compared to the PL (p = 0.0220) (ED 473.8 42.0 milliseconds, PL 482.4 54.0 milliseconds). There was a trend for the ED to lower the number of lapses (i.e., reaction time > 500 milliseconds) (p = 0.0608). The acute consumption of a commercially available ED produced a significant improvement in psychomotor vigilance in exercise-trained men and women.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A57-A57
Author(s):  
A A Parekh ◽  
K Kam ◽  
A Mullins ◽  
A Fakhoury ◽  
B Castillo ◽  
...  

Abstract Introduction There is large inter-individual variability in the relationship between obstructive sleep apnea (OSA) severity and lapses in vigilance as measured using psychomotor vigilance test (PVT). We have previously shown that overnight sleep EEG K-complex slow wave coupling (∆SWAK) exhibits a dose-responsive relationship with next-day lapses in vigilance in OSA on and off treatment. We hypothesized that a variable thalamic dysfunction in OSA explains difference in lapses in vigilance and alterations in ∆SWAK across individuals. Methods Five newly diagnosed severe OSA subjects (mean apnea-hypopnea index [AHI4%=57.1±22.8/hr.]) with excessive daytime sleepiness (Epworth Sleepiness Scale=11±3.4) underwent nocturnal polysomnography followed by PVT testing within a 3T SKYRA MRI scanner. The PVT task inside the scanner (PVT-fMRI) was adapted to match the gold standard PVT-192 device. Each fMRI scanning session consisted of 2 10-min PVT runs interleaved with 2 control conditions wherein the subject pressed the response button at random intervals absent of a visual stimulus. fMRI data was analyzed in 2-step procedure (individual time-series followed by group analysis) using Analysis of Functional Neuroimages (AFNI) software package. To estimate thalamic activity during PVT-fMRI, parameter estimates of the %change in blood-oxygen-level-dependent (BOLD) signal using the contrast PVT-Control were used as the primary metric. The region of interest was limited to the bilateral thalamus using the Eickhoff-Zilles macro labels from the MNI N27 template. Results In a preliminary test, PVT performance for the subjects inside the scanner was not significantly different from that outside the scanner (PVTLapsesfMRI=7.3±2.1 vs. PVTLapsesPVT192=6.4±3.6 mean±std; PVTLapses=reaction time &gt; 500 ms.). Within subjects, a trend toward lower thalamic recruitment was observed during PVT-fMRI (-0.17±0.2%; p=0.1). Further, lower thalamic activity during PVT-fMRI also showed a trend to lower overnight ∆SWAK (mean -1.2±1.4) values (r = 0.61, p = 0.17). Conclusion In severe OSA subjects with excessive daytime sleepiness, we observed a trend to reduced thalamic activity during daytime PVT. Overnight EEG K-complex slow wave coupling showed a similar trend with next-day thalamic activity during PVT, however the small sample size may have limited our ability to detect this association with statistical significance. Support AASM Foundation 199-FP-18; NIH K24HL109156


2012 ◽  
Vol 21 (6) ◽  
pp. 659-674 ◽  
Author(s):  
SRINIVASAN RAJARAMAN ◽  
SRIDHAR RAMAKRISHNAN ◽  
DAVID THORSLEY ◽  
NANCY J. WESENSTEN ◽  
THOMAS J. BALKIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document