scholarly journals [O-Isopropyl-N-(4-nitrophenyl)thiocarbamato-κS]-(tri-4-tolylphosphine-κP)gold(I)

Molbank ◽  
10.3390/m1028 ◽  
2018 ◽  
Vol 2018 (4) ◽  
pp. M1028
Author(s):  
Chien Yeo ◽  
Edward Tiekink

The synthesis, spectroscopic characterization and X-ray crystal structure of the title compound, (4-tolyl)3PAu[SC(O-i-Pr)=NC6H4NO2-4] (1) are described. Spectroscopy exhibited the expected features confirming the formation of the compound. The molecular structure of 1 confirms the expected linear P–Au–S coordination geometry defined by thiolate-S and phosphane-P atoms. The nearly 7° deviation from linearity is ascribed to the close approach of the imine-bound phenyl group, indicative of a semi-localized Au…π(arene) interaction. The three-dimensional molecular packing is consolidated by methyl- and tolyl-C–H…O(nitro) and tolyl-C–H…π(tolyl) interactions.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.



2014 ◽  
Vol 70 (12) ◽  
pp. m397-m398 ◽  
Author(s):  
Ulrich Flörke ◽  
Aziza Ahmida ◽  
Hans Egold ◽  
Gerald Henkel

The molecular structure of the title compound, [CuCl(C7H12N2S)2], shows a slightly distorted trigonal–planar coordination geometry of the Cu atom. The Cu—Cl bond measures 2.2287 (9) Å, and the two Cu—S bonds are significantly different from each other, with values of 2.2270 (10) and 2.2662 (10) Å. Also, the S—Cu—Cl angles differ, with values of 113.80 (4) and 124.42 (4)°, while the S—Cu—S angle is 121.51 (4)°. The two imidazole rings are almost parallel, making a dihedral angle of 2.1 (2)°. In the crystal, the shortest C—H...Cl interactions stabilize a three-dimensional network with molecules linked into centrosymmetric dimers that are stacked along theb-axis direction.



Author(s):  
A. P. Bozopoulos ◽  
C. A. Kavounis ◽  
G. A. Stergioudis ◽  
P. J. Rentzeperis ◽  
A. Varvoglis

AbstractThe crystal and molecular structure of the title compound (BPIS hereafter) has been determined from three-dimensional X-ray data, measured on a computer-controlled STOE AED 2 diffractometer. The structure is triclinic Space groupThe structure was solved by Patterson and Fourier syntheses and refined by least-squares calculations to a finalTwo I-C



2013 ◽  
Vol 69 (11) ◽  
pp. m591-m592
Author(s):  
Nanthawat Wannarit ◽  
Chaveng Pakawatchai ◽  
Sujittra Youngme

The complete molecule of the title compound, [Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2], is completed by the application of a twofold rotation and comprises two CuIIions, each of which is pentacoordinated by two N atoms from a bidentate 1,10-phenanthroline (phen) ligand, two O atoms from acetate ligands and an O atom from a trifluoromethanesulfonate anion, forming a (4 + 1) distorted square-pyramidal coordination geometry. The CuIIions are connected by two acetate bridges in asyn–synconfiguration. The F atoms of the trifluoromethanesulfonate ligands are disordered, with site-occupation factors of 70 and 30. The molecular structure is stabilized by intramolecular face-to-face π–π interactions with centroid–centroid distances in the range 3.5654 (12)–3.8775(12) Å. The crystal structure is stabilized by C—H...O interactions, leading to a three-dimensional lattice structure.



2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.



Author(s):  
Rayya A. Al Balushi ◽  
Muhammad S. Khan ◽  
Md. Serajul Haque Faizi ◽  
Ashanul Haque ◽  
Kieran Molloy ◽  
...  

In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C—H...Cl interactions. Furthermore, C—H...π and π–π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H...H and C...H/H...C interactions.



2014 ◽  
Vol 70 (6) ◽  
pp. 562-565 ◽  
Author(s):  
Wei Zhang ◽  
Yu-Quan Feng

A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR, X-ray photoelectron spectroscopy and single-crystal X-ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIIIcentre is seven-coordinated by three O atoms and four N atoms. The coordination geometry of each BiIIIatom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembledviaO—H...O hydrogen bonds, resulting in the formation of a three-dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid-to-centroid distances of 3.461 (4) and 3.641 (4) Å.



1977 ◽  
Vol 55 (5) ◽  
pp. 743-748 ◽  
Author(s):  
Jack G. Ballard ◽  
Thomas Birchall ◽  
David R. Slim

The title compound has been prepared by the reaction of SbF5 and SbCl5 in liquid SO2. Raman and Mössbauer spectra have been recorded and its crystal structure determined by three-dimensional X-ray counter measurements. Crystals are monoclinic with a = 12.359(6) Å, b = 16.480(10) Å, c = 9.387(3) Å, β = 103.96(5)°. The structure has been refined in the space group P21/n to a final agreement index R2 of 0.113 for 2415 independent reflections. The structure consists of a cis fluorine-bridged trimer with one of the chlorine atoms 25% substituted by fluorine.



1989 ◽  
Vol 44 (1) ◽  
pp. 5-8
Author(s):  
Michel Mégnamisi-Bélombé

Abstract trans-Dichloro(ethanedial-dioximato)(ethanediaI-dioxime)rhodium (III), RhCl2(GH)(GH2), has been synthesized and its structure determined by single crystal X-ray diffraction at room temperature. C4H7Cl2N4O4Rh, Mr = 348.94. monoclinic space group P21/ɑ; a = 10.543(3), b = 8.363(2), c = 11.512(3)Å ; β = 92.79(2)°; V = 1024Å3; Z = 4; Dc = 2.26 Mg m-3. Final Rw = 0.075 for 2035 reflections and 139 parameters. The coordination geometry around Rh is a dis­torted (4+2) octahedron, with four chelating N atoms lying in the equatorial plane and the two Cl atoms in the apical positions. The H atoms of the oxime groups are involved in relatively weak intramolecular O-H-O bridgings, as well as in very strong intermolecular bridgings which extend throughout the crystal structure and propagate nearly parallel to the [101] crystallographic direction.



1994 ◽  
Vol 49 (12) ◽  
pp. 1654-1658 ◽  
Author(s):  
Markus Wieber ◽  
Stefan Lang ◽  
Stefan Rohse ◽  
Ralph Habersack ◽  
Christian Burschka

The synthesis of triphenyltelluroniumsulfide (Ph3TeS)4 is described together with a NMR-spectroscopic characterization. The structure of the title compound was determined by single crystal X-ray diffraction. Crystals of triphenyltelluroniumsulfide are triclinic (space group P1) with the cell parameters a = 1178.0(3) pm. b = 1295.8(6) pm. c = 1298.7(4) pm, α = 77.67(3)°, β = 82.18(2)°, γ = 66.00(2)° (V = 1766(1) × 106 pm3) and Z = 2. The compound appears to form a step-like structure of two [Ph3TeS]2 units and crystallizes with two molecules of CH2Cl2 per unit cell.



Sign in / Sign up

Export Citation Format

Share Document