scholarly journals Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

Materials ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 840 ◽  
Author(s):  
Joamin Gonzalez-Gutierrez ◽  
Santiago Cano ◽  
Stephan Schuschnigg ◽  
Christian Kukla ◽  
Janak Sapkota ◽  
...  
2021 ◽  
Vol 17 ◽  
pp. 100264
Author(s):  
Vicky Subhash Telang ◽  
Rakesh Pemmada ◽  
Vinoy Thomas ◽  
Seeram Ramakrishna ◽  
Puneet Tandon ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 46-56
Author(s):  
G.P. Greeff

The additive manufacturing of products promises exciting possibilities. Measurement methodologies, which measure an in-process dataset of these products and interpret the results, are essential. However, before developing such a level of quality assurance several in-process measurands must be realized. One of these is the material flow rate, or rate of adding material during the additive manufacturing process. Yet, measuring this rate directly in material extrusion additive manufacturing presents challenges. This work presents two indirect methods to estimate the volumetric flow rate at the liquefier exit in material extrusion, specifically in Fused Deposition Modeling or Fused Filament Fabrication. The methods are cost effective and may be applied in future sensor integration. The first method is an optical filament feed rate and width measurement and the second is based on the liquefier pressure. Both are used to indirectly estimate the volumetric flow rate. The work also includes a description of linking the G-code command to the final print result, which may be used to create a per extrusion command model of the part.


2021 ◽  
Author(s):  
Mainak Saha ◽  
Manab Mallik

At present, fabrication of ceramics using AM-based techniques mainly suffers from two primary limitations, viz: (i) low density and (ii) poor mechanical properties of the finished components. It is worth mentioning that the present state of research in the avenue of AM-based ceramics is focussed mainly on fabricating ceramic and cermet components with enhanced densities and improved mechanical properties. However, to the best of the authors’ knowledge, not much is known about the microstructure evolution and its correlation with the mechanical properties of the finished parts. Addressing the aforementioned avenue is highly essential for understanding the utilisation of these components for structural applications. To this end, the present review article is aimed to address the future perspectives in this avenue has been provided with a special emphasis on the need to establish a systematic structure-property correlation in these materials.


2021 ◽  
Author(s):  
Mainak Saha ◽  
Manab Mallik

The present decade has witnessed a huge volume of research revolving around a number of Additive Manufacturing (AM) techniques, especially for the fabrication of different metallic materials. However, fabrication of ceramics and cermets using AM-based techniques mainly suffers from two primary limitations which are: (i) low density and (ii) poor mechanical properties of the final components. Although there has been a considerable volume of work on AM based techniques for manufacturing ceramic and cermet parts with enhanced densities and improved mechanical properties, however, there is limited understanding on the correlation of microstructure of AM-based ceramic and cermet components with the mechanical properties. The present article is aimed to review some of the most commonly used AM techniques for the fabrication of ceramics and cermets. This has been followed by a brief discussion on the microstructural developments during different AM-based techniques. In addition, an overview of the challenges and future perspectives, mainly associated with the necessity towards developing a systematic structure-property correlation in these materials has been provided based on three factors viz. the efficiency of different AM-based fabrication techniques (involved in ceramic and cermet research), an interdisciplinary research combining ceramic research with microstructural engineering and commercialisation of different AM techniques based on the authors’ viewpoints.


Sign in / Sign up

Export Citation Format

Share Document