Additive manufacturing of ceramics: Present status and future perspectives

2021 ◽  
Author(s):  
Mainak Saha ◽  
Manab Mallik

At present, fabrication of ceramics using AM-based techniques mainly suffers from two primary limitations, viz: (i) low density and (ii) poor mechanical properties of the finished components. It is worth mentioning that the present state of research in the avenue of AM-based ceramics is focussed mainly on fabricating ceramic and cermet components with enhanced densities and improved mechanical properties. However, to the best of the authors’ knowledge, not much is known about the microstructure evolution and its correlation with the mechanical properties of the finished parts. Addressing the aforementioned avenue is highly essential for understanding the utilisation of these components for structural applications. To this end, the present review article is aimed to address the future perspectives in this avenue has been provided with a special emphasis on the need to establish a systematic structure-property correlation in these materials.

2021 ◽  
Author(s):  
Mainak Saha ◽  
Manab Mallik

The present decade has witnessed a huge volume of research revolving around a number of Additive Manufacturing (AM) techniques, especially for the fabrication of different metallic materials. However, fabrication of ceramics and cermets using AM-based techniques mainly suffers from two primary limitations which are: (i) low density and (ii) poor mechanical properties of the final components. Although there has been a considerable volume of work on AM based techniques for manufacturing ceramic and cermet parts with enhanced densities and improved mechanical properties, however, there is limited understanding on the correlation of microstructure of AM-based ceramic and cermet components with the mechanical properties. The present article is aimed to review some of the most commonly used AM techniques for the fabrication of ceramics and cermets. This has been followed by a brief discussion on the microstructural developments during different AM-based techniques. In addition, an overview of the challenges and future perspectives, mainly associated with the necessity towards developing a systematic structure-property correlation in these materials has been provided based on three factors viz. the efficiency of different AM-based fabrication techniques (involved in ceramic and cermet research), an interdisciplinary research combining ceramic research with microstructural engineering and commercialisation of different AM techniques based on the authors’ viewpoints.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2725 ◽  
Author(s):  
Jānis Andersons ◽  
Mikelis Kirpluks ◽  
Ugis Cabulis

Rigid low-density closed-cell polyurethane (PU) foams are widely used in both thermal insulation and structural applications. The sustainability of PU foam production can be increased by using bio-based components and fillers that ensure both enhanced mechanical properties and higher renewable material content. Such bio-based foams were produced using polyols derived from rapeseed oil and microcrystalline cellulose (MCC) fibers as filler. The effect of MCC fiber loading of up to 10 wt % on the morphology, tensile stiffness, and strength of foams has been evaluated. For estimation of the mechanical reinforcement efficiency of foams, a model allowing for the partial alignment of filler fibers in foam struts was developed and validated against test results. It is shown that although applying MCC fibers leads to modest gains in the mechanical properties of PU foams compared with cellulose nanocrystal reinforcement, it may provide a higher content of renewable material in the foams.


Author(s):  
Arman Abdigaliyev ◽  
Jiong Hu

During the last decades, cellular lightweight concrete (CLC), or foamed concrete, has been experiencing greater interest in geotechnical, structural, and non-structural applications. The low density and high flowability makes it a favorable construction material in relation to handling, placing, and construction costs. However, the applications of low-density cellular concrete (LDCC), the category of CLC with a unit weight less than 50 pounds per cubic foot (801 kg/m3) and generally without fine aggregates, are limited mostly to backfill applications in geotechnical engineering. The main reason lies in the brittleness of the material and low to zero resistance to flexural loads. Fiber-reinforced LDCC may be a reasonable solution to improve mechanical properties and expand the application range of the material. This study investigated the effects of adding polypropylene and hybrid fibers on physical and mechanical properties of LDCC and the feasibility of expanding LDCC utilization to non-structural applications. Results showed that although there is a slight reduction of flowability and compressive strength, the flexural behavior of LDCC can be significantly improved with the incorporation of fibers. The flexural strength and flexural toughness of LDCC was found to increase from 26.8 pounds per square inch (psi) (0.18 MPa) to 217.5 psi (1.48 MPa), and from 5.67 lb-in. (0.64 kN-mm) to 292 lb-in. (33.0 kN-mm) respectively at a 1.0% addition rate of a fibrillated polypropylene fiber selected in this study, which makes it a feasible material for non-structural applications.


2016 ◽  
Vol 43 (2) ◽  
pp. 0203003 ◽  
Author(s):  
陈洪宇 Chen Hongyu ◽  
顾冬冬 Gu Dongdong ◽  
顾荣海 Gu Ronghai ◽  
陈文华 Chen Wenhua ◽  
戴冬华 Dai Donghua

2012 ◽  
Vol 727-728 ◽  
pp. 1085-1091
Author(s):  
José Vitor C. Souza ◽  
O.M.M. Silva ◽  
E.A. Raymundo ◽  
João Paulo Barros Machado

Si3N4based ceramics are widely researched because of their low density, high hardness, toughness and wear resistance. Post-sintering heat treatments can enhance their properties. Thus, the objective of the present paper was the development of a Si3N4based ceramic, suitable for structural applications, by sintering in nitrogen gas pressure, using AlN, Al2O3, and Y2O3as additives and post-sintering heat treatment. The green bodies were fabricated by uniaxial pressing at 80 MPa with subsequent isostatic pressing at 300 MPa. The samples were sintered at 1900°C for 1 h under N2gas pressure of 0.1 MPa. Post-sintering heat treatment was performed at 1500°C for 48 h under N2gas pressure of 1.0 MPa. From the results, it was observed that after post-sintering heat treatment there was a reduction of α-SiAlON phase and increase of β-Si3N4phase, with consequent changing in grain size, decrease of fracture toughness and increase of the Vickers hardness.


1990 ◽  
Vol 207 ◽  
Author(s):  
James D. Lemay

AbstractHigh energy physics applications at the Department of Energy National Laboratories require unique low-density foams of demanding homogeneity specifications (cell sizes on the order of 10 μm or smaller). These delicate and fragile foams are machined and shaped into specimens to exacting tolerances. In this work, the mechanical properties of a variety of these low density microcellular foams are reported as functions of foam density and morphology.


Sign in / Sign up

Export Citation Format

Share Document