scholarly journals Ordered ZnO/Ni Hollow Microsphere Arrays as Anode Materials for Lithium Ion Batteries

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1193 ◽  
Author(s):  
Shen ◽  
Zhong ◽  
Huang ◽  
Lin ◽  
Wang

Well-designed nanostructures are very important for the electrochemical performance of lithium-ion electrode materials. In order to improve the electrochemical performance of ZnO-based anode materials, ZnO/Ni composite film, assembled by ordered hollow microsphere arrays, is designed and fabricated by means of magnetron sputtering technique using a colloidal crystal template composed of a monolayer of ordered polystyrene (PS) microspheres. The ordered hollow microsphere structure as well as the constituent Ni component of the ZnO/Ni film show major advantages of homogenizing electrode reactions, enhancing electrode reaction kinetics and accommodating volume change of active materials, so they can reduce electrode polarization and stabilize electrode structure. Consequently, the resulting ordered ZnO/Ni hollow microspheres arrays deliver an initial charge capacity of 685 mAh g−1, an initial coulombic efficiency of 68%, and a capacity retention rate of 69% after 100 cycles, all of which are higher than those of the pure ZnO film. These results show progress in developing more stable ZnO-based anode materials for lithium ion batteries.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3149 ◽  
Author(s):  
Linglong Kong ◽  
Lu Wang ◽  
Deye Sun ◽  
Su Meng ◽  
Dandan Xu ◽  
...  

The aggregation morphology of anode materials plays a vital role in achieving high performance lithium-ion batteries. Herein, Co3O4 anode materials with different aggregation morphologies were successfully prepared by modulating the morphology of precursors with different cobalt sources by the mild coprecipitation method. The fabricated Co3O4 can be flower-like, spherical, irregular, and urchin-like. Detailed investigation on the electrochemical performance demonstrated that flower-like Co3O4 consisting of nanorods exhibited superior performance. The reversible capacity maintained 910.7 mAh·g−1 at 500 mA·g−1 and 717 mAh·g−1 at 1000 mA·g−1 after 500 cycles. The cyclic stability was greatly enhanced, with a capacity retention rate of 92.7% at 500 mA·g−1 and 78.27% at 1000 mA·g−1 after 500 cycles. Electrochemical performance in long-term storage and high temperature conditions was still excellent. The unique aggregation morphology of flower-like Co3O4 yielded a reduction of charge-transfer resistance and stabilization of electrode structure compared with other aggregation morphologies.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


2021 ◽  
Vol 35 ◽  
pp. 102254
Author(s):  
Shuangxi Shao ◽  
Boya Liu ◽  
Man Zhang ◽  
Jinling Yin ◽  
Yinyi Gao ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


2017 ◽  
Vol 41 (21) ◽  
pp. 12901-12909 ◽  
Author(s):  
Chunfeng Shao ◽  
Ziqiang Wang ◽  
Errui Wang ◽  
Shujun Qiu ◽  
Hailiang Chu ◽  
...  

Guanine was, for the first time, used as a nitrogen source during the synthesis of nitrogen-doped porous carbons (NMCs) with enhanced electrochemical performance.


2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


Sign in / Sign up

Export Citation Format

Share Document