scholarly journals Defect Analysis and Detection of Cutting Regions in CFRP Machining Using AWJM

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4055 ◽  
Author(s):  
Pedro F. Mayuet Ares ◽  
Franck Girot Mata ◽  
Moisés Batista Ponce ◽  
Jorge Salguero Gómez

The use of composite materials with a polymeric matrix, concretely carbon fiber reinforced polymer, is undergoing further development owing to the maturity reached by the forming processes and their excellent relationship in terms of specific properties. This means that they can be implemented more easily in different industrial sectors at a lower cost. However, when the components manufactured demand high dimensional and geometric requirements, they must be subjected to machining processes that cause damage to the material. As a result, alternative methods to conventional machining are increasingly being proposed. In this article, the abrasive waterjet machining process is proposed because of its advantages in terms of high production rates, absence of thermal damage and respect for the environment. In this way, it was possible to select parameters (stand-off distance, traverse feed rate, and abrasive mass flow rate) that minimize the characteristic defects of the process such as taper angle or the identification of different surface quality regions in order to eliminate striations caused by jet deviation. For this purpose, taper angle and roughness evaluations were carried out in three different zones: initial or jet inlet, intermediate, and final or jet outlet. In this way, it was possible to characterize different cutting regions with scanning electronic microscopy (SEM) and to distinguish the statistical significance of the parameters and their effects on the cut through an analysis of variance (ANOVA). This analysis has made it possible to distinguish the optimal parameters for the process.

2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study


Author(s):  
Mayur Narkhede ◽  
Sagil James

The research involves experimental study on precision machining of hybrid composite stacks using Submerged Abrasive Waterjet Machining (SAWJM) process. In this study, an in-house fabricated SAWJM setup is used to machine a stack of Carbon Fiber Reinforced Polymer (CFRP) and Titanium. The effect of critical parameters including stand-off distance and abrasive grain size on the size of the cavity machined during SAWJM and Abrasive Waterjet Machining (AWJM) processes are studied. The study found that SAWJM process is capable of successfully machining CFRP/Titanium composites with high precision. The machined surface is free of thermal stresses and did not show any delamination or cracking around the edges. The study suggested that the stand-off distance and abrasive grain size has significant influence on the machining process. The cavities machined on both CFRP and titanium during SAWJM process are smaller and more circular than that produced during AWJM process. The results of this study provide deeper insight into precision machining of hybrid composite stacks.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Puneet Kumar ◽  
Bhavik Tank ◽  
Ravi Kant

Abrasive water jet machining (AWJM) is one of the most developed non-traditional machining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.


Author(s):  
A. SHANMUGAM ◽  
T. MOHANRAJ ◽  
K. KRISHNAMURTHY ◽  
ALI KAYA GUR

This work aims to perform the multi-response optimization for abrasive waterjet machining (AWJM) of glass fiber reinforced plastics (GFRP). The experiments were conducted with AWJM factors like pressure (P), traverse speed (TS), and standoff distance (SOD) at three levels. Taguchi’s L9 orthogonal array (OA) was used to design the experiments. The influence of control factors was evaluated by measuring the surface roughness and taper angle while cutting GFRP. The optimum parameter for an individual response was obtained through Taguchi’s [Formula: see text]/[Formula: see text] and multi-response optimization was performed with TOPSIS. From TOPSIS, the optimal parameter of the pressure of 200 MPa, standoff distance (SOD) of 1.5[Formula: see text]mm, and traverse speed (TS) of 25[Formula: see text]mm/min were found. After optimization, the taper angle was decreased by 1.41%. The influence of cutting variables on the responses was statistically analyzed through analysis of variance. It was observed that the pressure has a significant effect on multi-response characteristics and a contribution of 85.90%. After, AWJM, the surface was examined using SEM analysis and found the deformation and pull-out of fibers.


2017 ◽  
Vol 740 ◽  
pp. 118-124 ◽  
Author(s):  
M.M.W. Irina ◽  
Azwan Iskandar Azmi ◽  
Chang Chuan Lee

Machining of fiber reinforcement polymer (FRP) composite without any defect is extremely challenging when using conventional processes. This mainly due to its inherent anisotropic, heterogeneous, thermal sensitivity, and highly abrasive of nature of fiber reinforcement. Therefore, a kind of non-conventional machining process namely abrasive waterjet machining (AWJM) was endeavoured as it has been reported to be able to machine or cut almost any material included composites. In fact, previous research only provides partially desired parameters on machining these materials and mainly focuses on plain FRP composite. Therefore, this research attempted to evaluate the significant AWJM process parameters comprehensively on the main machinability output on the hybrid FRP composite. 2k factorial design and statistical analysis of variance (ANOVA) were applied to determine the performance of trimming process regarding surface roughness and delamination (entrance and exit). Experimental results revealed that the surface roughness was affected by the stand-off distance, abrasive flow rate, traverse rate rather than hydraulic pressure. Similar findings as to that of surface roughness were also observed for the top and bottom delamination damage.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Prasad D. Unde ◽  
M. D. Gayakwad ◽  
N. G. Patil ◽  
R. S. Pawade ◽  
D. G. Thakur ◽  
...  

Abrasive waterjet machining (AWJM) is an emerging machining process in which the material removal takes place due to abrasion. A stream of abrasive particles mixed with filtered water is subjected to the work surface with high velocity. The present study is focused on the experimental research and evaluation of the abrasive waterjet machining process in order to evaluate the technological factors affecting the machining quality of CFRP laminate using response surface methodology. The standoff distance, feed rate, and jet pressure were found to affect kerf taper, delamination, material removal rate, and surface roughness. The material related parameter, orientation of fiber, has been also found to affect the machining performance. The kerf taper was found to be 0.029 for 45° fiber orientation whereas it was 0.036 and 0.038 for 60° and 90°, respectively. The material removal rate is 18.95 mm3/sec for 45° fiber orientation compared to 18.26 mm3/sec for 60° and 17.4 mm3/sec for 90° fiber orientation. The Ra value for 45° fiber orientation is 4.911 µm and for 60° and 90° fiber orientation it is 4.927 µm and 4.974 µm, respectively. Delamination factor is found to be more for 45° fiber orientation, that is, 2.238, but for 60° and 90° it is 2.029 and 2.196, respectively.


Sign in / Sign up

Export Citation Format

Share Document