scholarly journals Experimental Investigation of Reinforced Concrete Beam with Openings Strengthened Using FRP Sheets under Cyclic Load

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3127
Author(s):  
Rania Salih ◽  
Fangyuan Zhou ◽  
Nadeem Abbas ◽  
Aamir Khan Mastoi

In this study, the cyclic behavior of reinforced concrete (RC) beam with openings strengthened using carbon fiber-reinforced polymers (FRPs) was experimentally investigated. Seven rectangular RC beams were cast and strengthened through external bonding of carbon fiber-reinforced polymer (CFRP) sheets around the beam web opening with different orientations to evaluate the maximum resistance, secant stiffness, strength degradation, ductility, energy dissipation capacity and behavior of the specimens’ failure mode under cyclic load. One solid beam without an opening (i.e., control specimen) and six beams constructed with circular web openings typically located in the middle of the beam and adjacent to the supports were used in the experiments. Among the six specimens with opening configuration, two beams were unstrengthened, and the remaining four specimens were strengthened with two layers of FRP sheets with vertical and inclined scheme orientation. Numerical studies were performed on ABAQUS software, and finite element modelling analysis results were verified through experiments. Results demonstrated that the use of FRP sheets has a significant effect on the cyclic behavior of RC beams, thereby improving the maximum strength and ultimate displacement to approximately 66.67% and 77.14%, respectively. The validated finite element models serve as a numerical platform to apply beneficial parametric studies, where the effects of opening size and bond length are investigated.

2020 ◽  
Vol 23 (3) ◽  
pp. 313-318
Author(s):  
Sarah Fadhil Abass ◽  
Bassman R. Muhammad ◽  
Qais A. Hasan ◽  
Qais A. Hasan

In this vast world after an earthquake lessons are learned; many strategies have been considered in order to achieve a proper seismic strength capacity.The aim of this paper is studying the seismic behavior of a typical reinforced concrete bridge pier in Iraq and implementing a proper technique of strengthening in order to fix any damage that had happened.Structure of a full scale three-dimensional finite element model was used in order to simulate a reinforced concrete pier via the computer software ABAQUS/CAE 2017 using concrete plasticity damage model (CDP).Under the action of Halabja earthquake, which was recorded at city of Halabja in Iraq on 12 November 2017, the behavior of model was traced, analyzed and the resulted damages were managed.The finite element analysis results indicated that the proposed configuration of carbon fiber reinforced polymers laminates substantially increases the lateral load strength and deformation capacity of the bridge pier


2012 ◽  
Vol 204-208 ◽  
pp. 3082-3085
Author(s):  
Zhao Hong Lu ◽  
Xiao Song Gu

This paper analyzed the cracking behavior of carbon fiber reinforced concrete beam under static load using the finite element numerical analysis. By the way of finite element numerical simulation and the method of increasing the load gradually to analyze the carbon fiber content influence on the beam cracking, crack developing, beam deflection and beam average crack spacing. By comparing with the simulation result of common reinforced concrete beam test piece, it turned out that the carbon fiber reinforced concrete beam has a good cracking and deformation behavior under the same ratio of reinforcement. Under the same load, both the carbon fiber reinforced concrete beam and the common reinforced concrete beam have a small deformation, but the carbon fiber reinforced concrete beam showed a better resistance to deformation as the load increasing, its deflection increasing extent showed an obvious decrease compared with that of the common reinforced concrete beams. Its crack width can be revised by the common reinforced concrete beam rules.


2012 ◽  
Vol 430-432 ◽  
pp. 331-336
Author(s):  
Jian Hua Wang

Carbon fiber-reinforced polymer (CFRP) sheets have recently become popular for use as repair or rehabilitation material for deteriorated carbon fiber reinforced concrete structures. Carbon fiber reinforced concrete beams were analyzed by finite element software ANASYS. Through the finite element analysis, the results showed that using bonded CFRP to strengthen R. C. beams can significantly increase their load carrying capacity. However, the beams with prestressed CFRP can withstand larger ultimate loads than beams with bonded CFRP. Using bonded CFRP to strengthen R. C. beams can obviously reduce the ultimate deflection.


Sign in / Sign up

Export Citation Format

Share Document