scholarly journals Novel Etching Technique for Delineation of Prior-Austenite Grain Boundaries in Low, Medium and High Carbon Steels

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3296
Author(s):  
Richard Thackray ◽  
Eric J. Palmiere ◽  
Omar Khalid

The etching of prior austenite grain boundaries in martensite for detailed quantitative metallography of low to high carbon steel has been carried out using aqueous solutions of picric acid containing different wetting agents. The choice of wetting agent was shown to be dependent on the carbon content of the steel, with sodium dodecyl sulfate (SDS) being more suitable for use with low and medium carbon steels, whereas sodium dodecylbenzene sulfonate (SDBS) was shown to be more appropriate for high carbon steels. It is also recommended that, for a particular steel, a variety of temper treatments should be carried out in order to reveal grain boundaries, particularly where more detailed results than simple grain size measurements are required. Finally, the use of dummy specimens prior to etching of the real samples was shown to reduce the need for re-polishing and re-etching of the samples.


2021 ◽  
Vol 58 (11) ◽  
pp. 697-714
Author(s):  
M. Böcker ◽  
M. Steinbacher ◽  
R. Fechte-Heinen

Abstract Knowledge of the size of the prior austenite grain is of key importance. If abnormal grain growth occurs during austenitization, the resultant inhomogeneous microstructure may negatively affect the strength and toughness properties of the final product. The visualization of prior austenite grain boundaries with an etchant based on picric acid has been applied for years. Despite this long-time experience, it is often challenging to achieve sufficiently good visualization of prior austenite grain boundaries in many steel grades, especially low-carbon steels. This work will study the effect of the cooling rate from austenitizing temperature down to room temperature, of the subsequent tempering treatment and the etchant on the visualization of prior austenite grain boundaries in a low-carbon microalloyed steel. All these parameters have an impact on the etching result. A suitable etchant for the visualization of prior austenite grain boundaries in a low-carbon microalloyed steel could be found.



2016 ◽  
Vol 879 ◽  
pp. 990-995 ◽  
Author(s):  
Jacek Komenda ◽  
David Martin ◽  
Johan Lönnqvist

Twelve experimental steels with a base composition 1.5wt% Mn, 0.01 wt% V and 0.1 wt% Nb and varying C (0.05, 010 and 0.20 wt%), Ti (20 – 260 ppm) and B (0 – 100 ppm) contents have been systematically examined to quantify the effects of composition on precipitation behavio-ur and hot ductility during simulated continuous casting conditions. Nb-rich precipitates were present in the alloys with 0.10 wt-% C and 0.20 wt-% C. Alloys with 0.05, 010 and 0.20wt% C contained 50 – 100 nm size Ti-Nb carbonitrides. Boron was bound in 20 – 100 nm size boronitrides located in prior austenite grain boundaries. A Gleeble 3800 was used to study hot ductility and strain induced precipitation processes in the alloys. Alloys without B and Ti additions exhibited poor hot ductility at 850°C and 950°C, whereas the 0.05 wt-% C and 0.10 wt-% C alloys showed improved hot ductility (reduction in area 40-50%) by the addition of either >50 ppm B or 250 ppm Ti. The 0.2 wt-% C alloys showed no improvement from B or Ti additions. Examination of fracture surfaces of hot ductility specimens showed that boronitrides were located at prior austenite grain boundaries in alloys containing 80 – 100 ppm of B. Compression-relaxation tests showed that alloying with boron caused a noticeable decrease of the start temperature of strain-induced precipitation in the alloys.



2011 ◽  
Vol 17 (S2) ◽  
pp. 1038-1039
Author(s):  
S Lawrence

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.



2012 ◽  
Vol 60 (13-14) ◽  
pp. 5049-5055 ◽  
Author(s):  
Peter J. Felfer ◽  
Chris R. Killmore ◽  
Jim G. Williams ◽  
Kristin R. Carpenter ◽  
Simon P. Ringer ◽  
...  


2017 ◽  
Vol 115 ◽  
pp. 165-169 ◽  
Author(s):  
Xianglong Li ◽  
Ping Wu ◽  
Ruijie Yang ◽  
Shoutian Zhao ◽  
Shiping Zhang ◽  
...  


The cavitational mode of failure of prior austenite grain boundaries in bainitic creep-resisting low alloy steels is now well established as a principal factor in the high incidence of cracking problems which has developed on modern power plant in recent years. The microstructural features dominating the cavitation process at the reheat temperature in a ½CMV bainitic steel of high classical residual level have been determined. The prior austenite grain boundaries become zones of comparative weakness ca . 1 pm thick at 700 °C and are incapable of sustaining significant shear loads. Deformation is therefore initiated by a relaxation of load, through a process of prior austenite grain boundary zone shear, from inclined to transverse boundaries such that a concentration of normal stress develops across the latter. The overall deformation is thereafter determined by cavitation of the transverse boundary zones, the necessary inclined boundary displacements being accommodated by further grain boundary zone shear. Transverse boundary cavitation is shown to be an essentially time-independent process of localized ductile microvoid coalescence resulting from the plastic deformation of the boundary zone.





2017 ◽  
Vol 122 ◽  
pp. 199-206 ◽  
Author(s):  
Jeongho Han ◽  
Alisson Kwiatkowski da Silva ◽  
Dirk Ponge ◽  
Dierk Raabe ◽  
Sang-Min Lee ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document