scholarly journals Residually Stressed Fiber Reinforced Solids: A Spectral Approach

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4076
Author(s):  
Mohd Halim Bin Mohd Shariff ◽  
Jose Merodio

We use a spectral approach to model residually stressed elastic solids that can be applied to carbon fiber reinforced solids with a preferred direction; since the spectral formulation is more general than the classical-invariant formulation, it facilitates the search for an adequate constitutive equation for these solids. The constitutive equation is governed by spectral invariants, where each of them has a direct meaning, and are functions of the preferred direction, the residual stress tensor and the right stretch tensor. Invariants that have a transparent interpretation are useful in assisting the construction of a stringent experiment to seek a specific form of strain energy function. A separable nonlinear (finite strain) strain energy function containing single-variable functions is postulated and the associated infinitesimal strain energy function is straightforwardly obtained from its finite strain counterpart. We prove that only 11 invariants are independent. Some illustrative boundary value calculations are given. The proposed strain energy function can be simply transformed to admit the mechanical influence of compressed fibers to be partially or fully excluded.

PAMM ◽  
2005 ◽  
Vol 5 (1) ◽  
pp. 245-246 ◽  
Author(s):  
Bernd Markert ◽  
Wolfgang Ehlers ◽  
Nils Karajan

Author(s):  
Leslee W. Brown ◽  
Lorenzo M. Smith

A transversely isotropic fiber reinforced elastomer’s hyperelasticity is characterized using a series of constitutive tests (uniaxial tension, uniaxial compression, simple shear, and constrained compression test). A suitable transversely isotropic hyperelastic invariant based strain energy function is proposed and methods for determining the material coefficients are shown. This material model is implemented in a finite element analysis by creating a user subroutine for a commercial finite element code and then used to analyze the material tests. A useful set of constitutive material data for multiple modes of deformation is given. The proposed strain energy function fits the experimental data reasonably well over the strain region of interest. Finite element analysis of the material tests reveals further insight into the materials constitutive nature. The proposed strain energy function is suitable for finite element use by the practicing engineer for small to moderate strains. The necessary material coefficients can be determined from a few simple laboratory tests.


2009 ◽  
Vol 77 (2) ◽  
Author(s):  
Pham Chi Vinh

In the present paper, formulas for the velocity of Rayleigh waves in incompressible isotropic solids subject to a general pure homogeneous prestrain are derived using the theory of cubic equation. They have simple algebraic form and hold for a general strain-energy function. The formulas are concretized for some specific forms of strain-energy function. They then become totally explicit in terms of parameters characterizing the material and the prestrains. These formulas recover the (exact) value of the dimensionless speed of Rayleigh wave in incompressible isotropic elastic materials (without prestrain). Interestingly that, for the case of hydrostatic stress, the formula for the Rayleigh wave velocity does not depend on the type of strain-energy function.


2010 ◽  
Vol 26 (3) ◽  
pp. 327-334 ◽  
Author(s):  
G. Silber ◽  
M. Alizadeh ◽  
M. Salimi

AbstractIn Elastomeric foam materials find wide applications for their excellent energy absorption properties. The mechanical property of elastomeric foams is highly nonlinear and it is essential to implement mathematical constitutive models capable of accurate representation of the stress-strain responses of foams. A constitutive modeling method of defining hyperfoam strain energy function by a Simplex Strategy is presented in this work. This study will demonstrate that a strain energy function of finite hyperelasticity for compressible media is applicable to describe the elastic properties of open cell soft foams. This strain energy function is implemented in the FE-tool ABAQUS and proposed for high compressible soft foams. To determine this constitutive equation, experimental data from a uniaxial compression test are used. As the parameters in the constitutive equation are linked in a non-linear way, non-linear optimization routines are adopted. Moreover due to the in homogeneities of the deformation field of the uniaxial compression test, the quality function of the optimization routine has to be determined by an FE-tool. The appropriateness of the strain energy function is tested by a complex loading test.By using the optimized parameters the FE-simulation of this test is in good accordance with the experimental data.


1979 ◽  
Vol 46 (1) ◽  
pp. 78-82 ◽  
Author(s):  
L. Anand

It is shown that the classical strain-energy function of infinitesimal isotropic elasticity is in good agreement with experiment for a wide class of materials for moderately large deformations, provided the infinitesimal strain measure occurring in the strain-energy function is replaced by the Hencky or logarithmic measure of finite strain.


A method of approach to the correlation of theory and experiment for incompressible isotropic elastic solids under finite strain was developed in a previous paper (Ogden 1972). Here, the results of that work are extended to incorporate the effects of compressibility (under isothermal conditions). The strain-energy function constructed for incompressible materials is augmented by a function of the density ratio with the result that experimental data on the compressibility of rubberlike materials are adequately accounted for. At the same time the good fit of the strain-energy function arising in the incompressibility theory to the data in simple tension, pure shear and equibiaxial tension is maintained in the compressible theory without any change in the values of the material constants. A full discussion of inequalities which may reasonably be imposed upon the material parameters occurring in the compressible theory is included.


Interfacial waves along the plane boundary between two pre-stressed incompressible elastic solids are considered. One of the solids is a half-space while the other has arbitrary uniform thickness. The principal axes of the underlying pure homogeneous deformation in the two solids are aligned, with one axis normal to the interface. For propagation along an in-plane principal axis, the dispersion equation is derived in respect of a general strain-energy function. Conditions on the pre-strain, pre-stress and material parameters that ensure the existence of a unique interfacial wavespeed at low frequencies are obtained, and it is shown that, in special circumstances, non-dispersive waves can exist at the low-frequency limit. Asymptotic results at the high-frequency limit are also obtained. For the case of equibiaxial pre-strain, more specific conditions are derived for the existence of interfacial waves at the low- and high-frequency asymptotes, and these provide information on the existence of waves for the whole frequency range. A particular feature of the structure considered is that it may act as a mechanical filter in different frequency regimes depending on the pre-strain, pre-stress and material parameters. When the wavespeed vanishes, the dispersion equation reduces to a bifurcation equation, solutions of which define states of stress and deformation which form boundaries of the region of stability of the underlying state of stress and deformation in the two materials for given material properties. The bifurcation equation is examined separately and an explicit bifurcation criterion is given for equibiaxial deformations. The results are illustrated graphically by considering several numerical examples based on a certain class of strain-energy functions, which includes the neo-Hookean strain-energy function. The results highlight low- and high-frequency features and demonstrate the influence of pre-stress and deformation on the multiplicity of propagating modes.


Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


Sign in / Sign up

Export Citation Format

Share Document