scholarly journals Interface Shear Strength at Various Joint Types in High-Strength Precast Concrete Structures

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4364
Author(s):  
Young-Jin Kim ◽  
Won-Jong Chin ◽  
Se-Jin Jeon

More precast concrete structures have recently been constructed due to their many advantages when compared to conventional cast-in-place construction. Structural behavior at the joints between the precast segments can significantly affect the overall integrity, safety, and serviceability of the structure. In this study, therefore, the interface shear strength of high-strength precast members was investigated by performing push-off tests with the following variables: compressive strength of precast members, dry or wet joint, number and height of shear keys, joint width, filler type, curing temperature, and lateral compressive stress. The test results were analyzed to reveal the effect of each test variable on the joint shear strengths of the specimens. For instance, the failure loads were increased by 14–140%, depending on the lateral compressive stress, as the specified compressive strength of the precast members was increased from 80 to 150 MPa in the dry joints. The failure loads of the wet joints strongly depended on the strength of the filler rather than on that of the precast members and, as a result, the specimen with ultra-high-strength concrete filler was 46–48% stronger than those with high-strength mortar filler. The shear strengths of various joint types obtained from the test were further analyzed in comparison with the predictive equations of Japan Society of Civil Engineers (JSCE) and American Association of State Highway and Transportation Officials (AASHTO) with the aim of validating the appropriateness of these design provisions. In particular, an improved value of a coefficient in the JSCE equation is proposed to cover a range of compressive strengths in various precast members and filling materials.

1987 ◽  
Vol 20 (8) ◽  
pp. 824
Author(s):  
J.E. Bechtold ◽  
Y. Dohmae ◽  
R.E. Sherman ◽  
R.B. Gustilo

2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


2003 ◽  
pp. 75-91
Author(s):  
Motoyuki SUZUKI ◽  
Mitsuyoshi AKIYAMA ◽  
Wei Lun WANG ◽  
Masayoshi SATO ◽  
Naomi MAEDA ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


Sign in / Sign up

Export Citation Format

Share Document