scholarly journals Fibre Distribution Characterization of Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) Plates Using Magnetic Probes

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5064
Author(s):  
Lufan Li ◽  
Jun Xia ◽  
Chee Chin ◽  
Steve Jones

Ultra-high performance fibre reinforced concrete (UHPFRC) is an innovative cement-based engineering material. The mechanical properties of UHPFRC not only depend on the properties of the concrete matrix and fibres, but also depend on the interaction between these two components. The fibre distribution is affected by many factors and previous researchers had developed different approaches to test the fibre distribution. This research adopted the non-destructive C-shape ferromagnetic probe inductive test and investigated the straight steel fibre distribution of the UHPFRC plate. A simplified characterization equation is introduced with an attenuation factor to consider the different plate thicknesses. The effective testing depth of this probe was tested to be 24 mm. By applying this method, fibre volume content and the fibre orientation angle can be calibrated for the entire plate. The fibre volume content generally fulfilled the design requirement. The fibre orientation angle followed a normal distribution, with a mean value of 45.60°. By testing small flexural specimens cut from the plates, it was found out that the mechanical performance (peak flexural strength) correlates with the product of fibre volume content and cosine fibre orientation angle.

2009 ◽  
Vol 43 (7) ◽  
pp. 1009-1023 ◽  
Author(s):  
Stephanie J. Barnett ◽  
Jean-Francois Lataste ◽  
Tony Parry ◽  
Steve G. Millard ◽  
Marios N. Soutsos

2014 ◽  
Vol 20 (3) ◽  
pp. 380-379 ◽  
Author(s):  
Adam Zofka ◽  
Miglė Paliukaitė ◽  
Audrius Vaitkus ◽  
Dominika Maliszewska ◽  
Ramandeep Josen ◽  
...  

This paper presents a study on the effects of casting procedure and resulting fibre orientation on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). To investigate the impact of fibre orientation in the UHPFRC specimens, three approaches were employed. First, densities were measured from the top, middle and bottom zones of the cylinders to observe physical changes as the function of cylinder height. Secondly, two engineering fracture tests were performed in both compression and tension, and a comparison of fracture energies was conducted between different cylinder zones. While previous studies have explored the influence of steel fibres on the UHPFRC performance, the Semi-Circular Bending (SCB) and Disc Compact Tension (DCT) experimental setups have not yet been used in the UHPFRC fracture testing. Lastly, samples from different zones were scanned using X-ray computer tomography (X-ray CT). Both visual and digital image analysis of the X-ray scans were conducted in order to observe fibre orientation pattern changes within different zones. Although density calculations showed insignificant differences between different zones, fracture testing exhibited significant differences through the testing process as well as through fracture energy computations. Furthermore, X-ray CT demonstrated considerable differences in spatial fibre orientation with respect to two uniquely defined angles.


2014 ◽  
Vol 54 (5) ◽  
pp. 358-362 ◽  
Author(s):  
Radoslav Sovják ◽  
Jana Rašínová ◽  
Petr Máca

<p>The main objective of this paper is to contribute to the development of ultra-high performance fibre reinforced concrete (UHPFRC) with respect to its effective fracture energy. Effective fracture energy was investigated in this paper considering different fibre volume fractions and different strain rates. It was concluded that the effective fracture energy is dependent on the strain rate. In addition, it was found that higher fibre volume fractions tend to decrease the sensitivity of the UHPFRC to increased strain rates.</p>


2018 ◽  
Vol 183 ◽  
pp. 02005
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni

The paper presents the results obtained on cylindrical Ultra High Performance Fibre Reinforced Concrete specimens with diameter of 30mm and a height of 60mm under compression at high stress rate (1.7–2.3 TPa/s). Four different percentages of fibre reinforcement are considered (1, 2, 3, and 4% fibre content) and compared with the results of the matrix (UHPC). A slight reduction of the strength and fracture time with the introduction of fibres is observed. The experimental results are analysed and discussed with the intent to better understand the mechanical behaviour of UHPFRC materials in case of dynamic event under service loading conditions.


2008 ◽  
Vol 17 (11) ◽  
pp. 316-317
Author(s):  
Daniel de MATTEIS ◽  
Pierre MARCHAND ◽  
Aude PETEL ◽  
Thierry THIBAUX ◽  
Nicolas FABRY ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1372 ◽  
Author(s):  
Krzysztof Ostrowski ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Daniel Wałach ◽  
Tomasz Gawenda ◽  
...  

When understanding the effect of the morphology of coarse aggregate on the properties of a fresh concrete mixture, the strength and deformability of self-compacting high-performance fibre-reinforced concrete (SCHPFRC) can be seen to be critical for its performance. In this research, regular and irregular grains were separated from granite coarse aggregate. The morphology of these grains was described while using digital image analysis. As a result, the aspect ratio, roundness and area ratio were determined in order to better understand this phenomenon. Then, the principal rheological, physical, and mechanical properties of SCHPFRC were determined. The obtained results indicated that the morphology of the grains of coarse aggregate has an impact on the strength and stiffness properties of SCHPFRC. Moreover, significant differences in the transverse strain of concretes were observed. The morphology of the coarse aggregate also has an impact on the rheological parameters of a fresh concrete mixture. To better understand this phenomenon, the hypothesized mechanism of the formation of SCHPFRC caused by different morphology of coarse aggregate was proposed at the end of the article.


Sign in / Sign up

Export Citation Format

Share Document