scholarly journals Proteomic Analysis of Porcine-Derived Collagen Membrane and Matrix

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5187
Author(s):  
Jung-Seok Lee ◽  
Goran Mitulović ◽  
Layla Panahipour ◽  
Reinhard Gruber

Collagen membranes and matrices being widely used in guided bone regeneration and soft tissue augmentation have characteristic properties based on their composition. The respective proteomic signatures have not been identified. Here, we performed a high-resolution shotgun proteomic analysis on two porcine collagen-based biomaterials designed for guided bone regeneration and soft tissue augmentation. Three lots each of a porcine-derived collagen membrane and a matrix derived from peritoneum and/or skin were digested and separated by nano-reverse-phase high-performance liquid chromatography. The peptides were subjected to mass spectrometric detection and analysis. A total of 37 proteins identified by two peptides were present in all collagen membranes and matrices, with 11 and 16 proteins being exclusively present in the membrane and matrix, respectively. The common extracellular matrix proteins include fibrillar collagens (COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL5A3, COL11A2), non-fibrillar collagens (COL4A2, COL6A1, COL6A2, COL6A3, COL7A1, COL16A1, COL22A1), and leucine-rich repeat proteoglycans (DCN, LUM, BGN, PRELP, OGN). The structural proteins vimentin, actin-based microfilaments (ACTB), annexins (ANXA1, ANXA5), tubulins (TUBA1B, TUBB), and histones (H2A, H2B, H4) were also identified. Examples of membrane-only proteins are COL12A1 and COL14A1, and, of matrix only proteins, elastin (ELN). The proteomic signature thus revealed the similarities between but also some individual proteins of collagen membrane and matrix.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4599
Author(s):  
Jong-Ju Ahn ◽  
Hyung-Joon Kim ◽  
Eun-Bin Bae ◽  
Won-Tak Cho ◽  
YunJeong Choi ◽  
...  

The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed. In the animal study, 36 artificial bone defects were formed in the mandibles of six beagles. Implants were inserted at the time of bone grafting, and membranes were assigned randomly. Eight weeks later, animals were sacrificed, micro-computed tomography was performed, and hematoxylin-eosin stained specimens were prepared. Physical properties (tensile strength and enzymatic degradation rate) were better in the Test group than in the Control group. No inflammation or membrane collapse was observed in either group, and bone volumes (%) in defects around implants were similar in the two groups (p > 0.05). The results of new bone areas (%) analysis also showed similar values in the two groups (p > 0.05). Therefore, it can be concluded that cross-linking the collagen membranes with EDC is the method of enhancing the physical properties (tensile strength and enzymatic degradation) of the collagen membranes without risk of toxicity.


PRILOZI ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 103-108
Author(s):  
Darko Veljanovski ◽  
Denis Baftijari ◽  
Zoran Susak ◽  
Aneta Atanasovska Stojanovska

Abstract Guided bone regeneration (GBR) is a therapeutic modality to achieve bone regeneration with the use of barrier membranes. The use of deproteinized bovine bone material (DBBM) for ridge preservation allows the preservation of the edentulous ridge dimensions. Here, we present a case of horizontal GBR using DBBM and a resorbable membrane, with simultaneous implant placement. Simultaneously, ridge preservation of the pontic area, using DBBM within a “socket seal” procedure was performed. Two implants were places at sites 23 and 26 to support a fixed partial denture (FPD). The mesial implant showed exposed buccal threads, which were then covered with autogenous bone particles and small size granules of DBBM. The collagen membrane was stabilized with periosteal mattress suture. Six months postoperatively, CBCT images revealed a stable buccal bone layer at the implant site, indicating a successful GBR procedure. At this point in time, tooth 24 was atraumatically extracted. A ridge preservation was done utilizing DBBM, and a soft tissue graft form the tuber. A ceramic-metal FPD with excellent “white aesthetics” and a harmonic transition zone to the soft tissue was fabricated. At 3 years follow up, the peri-implant bone levels were stable, and the clinical outcomes were excellent. It is concluded that a GBR procedure, utilizing DBBM and a collagen barrier membrane with simultaneous implant placement, as well as ridge preservation using DBBM, are predictable therapeutic methods. However, gentle manipulation of the soft tissues, and wound stability, with tension-free passive closure of the wound margins are prerequisites for a long-term clinical success.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3007
Author(s):  
Marta Vallecillo-Rivas ◽  
Manuel Toledano-Osorio ◽  
Cristina Vallecillo ◽  
Manuel Toledano ◽  
Raquel Osorio

Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.


Sign in / Sign up

Export Citation Format

Share Document