scholarly journals Artificial Neural Network Algorithms for 3D Printing

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Muhammad Arif Mahmood ◽  
Anita Ioana Visan ◽  
Carmen Ristoscu ◽  
Ion N. Mihailescu

Additive manufacturing with an emphasis on 3D printing has recently become popular due to its exceptional advantages over conventional manufacturing processes. However, 3D printing process parameters are challenging to optimize, as they influence the properties and usage time of printed parts. Therefore, it is a complex task to develop a correlation between process parameters and printed parts’ properties via traditional optimization methods. A machine-learning technique was recently validated to carry out intricate pattern identification and develop a deterministic relationship, eliminating the need to develop and solve physical models. In machine learning, artificial neural network (ANN) is the most widely utilized model, owing to its capability to solve large datasets and strong computational supremacy. This study compiles the advancement of ANN in several aspects of 3D printing. Challenges while applying ANN in 3D printing and their potential solutions are indicated. Finally, upcoming trends for the application of ANN in 3D printing are projected.

Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2022 ◽  
pp. 1-30
Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


Author(s):  
Atul Anand ◽  
L Suganthi

In  the present study, a hybrid  optimizing algorithm has been proposed using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for Artificial Neural Network (ANN) to improve the estimation of  electricity demand of  the state of Tamil Nadu in India. The GA-PSO model optimizes  the coefficients of factors of  gross state domestic product (GSDP), per capita demand, income and  consumer price index (CPI) that affect the electricity demand. Based on historical data of 25 years from 1991 till 2015 , the simulation results of GA-PSO models  are having greater accuracy and reliability than single optimization methods based on either PSO or GA. The forecasting results of ANN-GA-PSO are better than models based on single optimization such as  ANN-BP, ANN-GA, ANN-PSO models. Further  the paper also forecasts the electricity demand of Tamil Nadu  based on two scenarios. First scenario is the "as-it-is" scenario , the second scenario  is based on milestones set for achieving goals of "Vision 2023" document for the state. The present research also explores the causality between the economic growth and electricity demand in case of Tamil Nadu. The research indicates that the direct causality exists between  GSDP and the electricity demand of the state.


Author(s):  
Atul Anand ◽  
L Suganthi

In the present study, a hybrid optimizing algorithm has been proposed using Genetic Algorithm (GA)and Particle Swarm Optimization (PSO) for Artificial Neural Network (ANN) to improve the estimation of electricity demand of the state of Tamil Nadu in India. The GA-PSO model optimizes the coefficients of factors of gross state domestic product (GSDP) , electricity consumption per capita, income growth rate and consumer price index (CPI) that affect the electricity demand. Based on historical data of 25 years from 1991 till 2015 , the simulation results of GA-PSO models are having greater accuracy and reliability than single optimization methods based on either PSO or GA. The forecasting results of ANN-GA-PSO are better than models based on single optimization such as ANN-BP, ANN-GA, ANN-PSO models. Further the paper also forecasts the electricity demand of Tamil Nadu based on two scenarios. First scenario is the "as-it-is" scenario , the second scenario is based on milestones set for achieving goals of "Vision 2023" document for the state. The present research also explores the causality between the economic growth and electricity demand in case of Tamil Nadu. The research indicates that a direct causality exists between GSDP and the electricity demand of the state.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Mengmeng Jiang ◽  
Qiong Wu ◽  
Xuetao Li

In modern urban construction, digitalization has become a trend, but the single source of information of traditional algorithms can not meet people’s needs, so the data fusion technology needs to draw estimation and judgment from multisource data to increase the confidence of data, improve reliability, and reduce uncertainty. In order to understand the influencing factors of regional digitalization, this paper conducts multisource heterogeneous data fusion analysis based on regional digitalization of machine learning, using decision tree and artificial neural network algorithm, compares the management efficiency and satisfaction of school population under different algorithms, and understands the data fusion and construction under different algorithms. According to the results, decision-making tree and artificial neural network algorithms were more efficient than traditional methods in building regional digitization, and their magnitude was about 60% higher. More importantly, the machine learning-based methods in multisource heterogeneous data fusion have been better than traditional calculation methods both in computational efficiency and misleading rate with respect to false alarms and missed alarms. This shows that machine learning methods can play an important role in the analysis of multisource heterogeneous data fusion in regional digital construction.


2020 ◽  
Vol 26 (2) ◽  
pp. 77-84
Author(s):  
SYLVESTER UWADIAE ◽  
FAITH OVIESU ◽  
BAMIDELE AYODELE

The target of this investigation was to model and optimize selected process parameters when extracting oil from Garcinia kola. Artificial neural network (ANN) and Box-Behnken design (BBD) in response surface methodology (RSM) were used for the modelling and optimization of the process parameters. The optimized process values were 397.86 mL and 399.99 mL for solvent volume; 109.32 min and 107.55 min for extraction time; 72.64 g and 70 g for sample mass and maximum yields of 20.839 wt% and 20.488 wt% for RSM and ANN respectively. The highly positively correlated experimental and anticipated values validated the models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marwah Sattar Hanoon ◽  
Ali Najah Ahmed ◽  
Nur’atiah Zaini ◽  
Arif Razzaq ◽  
Pavitra Kumar ◽  
...  

AbstractAccurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.


Author(s):  
Itishree Mohanty ◽  
Dabashish Bhattacherjee

The recent developments in computational intelligence has enhances the applicability of empirical modelling in different areas particularly in the area of machine learning. These new approaches are based on analysing the data about a system, in particular finding connections between the system state variables (input, internal and output variables) without having precise knowledge about the physical behaviour of the system. These data driven methods explain advances on conventional empirical modelling and include contributions from many overlapping fields like Artificial Intelligence (AI), Computational Intelligence (CI), Soft Computing (SC), Machine Learning (ML), Intelligent Data Analysis (IDA), and Data Mining (DM). The most popular computational intelligence techniques used in process modelling of steel industry includes neural networks, fuzzy rule-based systems, genetic algorithms as well as approaches to model integration. This chapter describes mainly the application of Artificial Neural Network (ANN) in steel industry. ANN has extensively used in improving and controlling different processes of steel industry like steel making, casting and rolling which lead to indirect energy savings through reduced product rejects, improved productivity and reduced down time. The efficiency of artificial neural network tool in handling steel plant processes has been discussed in detail. ANN based models are found to be very potential to handle very complex, dynamic and non-linear problems.


This chapter is an explanation of artificial neural network (ANN), which is one of the machine learning tools applied for medical purposes. The biological and mathematical definition of neural network is provided and the activation functions effective for processing are listed. Some figures are collected for better understanding.


Sign in / Sign up

Export Citation Format

Share Document