scholarly journals Development of a Model of Crack Propagation in Multilayer Hard Coatings under Conditions of Stochastic Force Impact

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 260
Author(s):  
Alexey Vereschaka ◽  
Sergey Grigoriev ◽  
Anatoli Chigarev ◽  
Filipp Milovich ◽  
Nikolay Sitnikov ◽  
...  

The article deals with the problems of cracking in the structure of multilayered coatings under the conditions of stochastic loading process. A mathematical model has been proposed in order to predict the crack propagation velocity in the coating while taking the influence of interlayer interfaces into account. A technique for calculating the probability density distribution of the coating fracture (failure rate) has been developed. The probability of a change in the crack growth direction is compared with the experimental data that were obtained as a result of the studies focused on the pattern of cracking in the Zr,Nb-(Zr,Nb)N-(Zr,Nb,Al)N and Ti-TiN-(Ti,Cr,Al)N coatings under the conditions of the real stochastic loading of cutting tools during the turning. The influence of the crystalline structure of the coating on the cracking pattern has been studied. The investigation has found the significant effect of the crystalline structure of the coating layers on the cracking pattern.

2012 ◽  
Vol 40 (1) ◽  
pp. 42-58 ◽  
Author(s):  
R. R. M. Ozelo ◽  
P. Sollero ◽  
A. L. A. Costa

Abstract REFERENCE: R. R. M. Ozelo, P. Sollero, and A. L. A. Costa, “An Alternative Technique to Evaluate Crack Propagation Path in Hyperelastic Materials,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January–March 2012, pp. 42–58. ABSTRACT: The analysis of crack propagation in tires aims to provide safety and reliable life prediction. Tire materials are usually nonlinear and present a hyperelastic behavior. Therefore, the use of nonlinear fracture mechanics theory and a hyperelastic material constitutive model are necessary. The material constitutive model used in this work is the Mooney–Rivlin. There are many techniques available to evaluate the crack propagation path in linear elastic materials and estimate the growth direction. However, most of these techniques are not applicable to hyperelastic materials. This paper presents an alternative technique for modeling crack propagation in hyperelastic materials, based in the J-Integral, to evaluate the crack path. The J-Integral is an energy-based parameter and is applicable to nonlinear materials. The technique was applied using abaqus software and compared to experimental tests.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jarosław Mikuła ◽  
Daniel Pakuła ◽  
Ludwina Żukowska ◽  
Klaudiusz Gołombek ◽  
Antonín Kříž

The article includes research results for the functional properties achieved for a wide range of sintered tool materials, including sintered carbides, cermets and three types of Al2O3 oxide tool ceramics ((Al2O3 + ZrO2, Al2O3 + TiC and Al2O3 + SiC(w)) with (Ti,Al)N coating deposited in the cathodic arc evaporation (CAE-PVD) method and comparison with uncoated tool materials. For all coated samples, a uniform wear pattern on tool shank was observed during metallographic analysis. Based on the scanning electron microscope (SEM) metallographic analysis, it was found that the most common types of tribological defects identified in tested materials are: mechanical defects and abrasive wear of the tool side, crater formation on the tool face, cracks on the tool side, chipping on the cutting edge and built-up edge from chip fragments. Deposition of (Ti,Al)N coating on all tested substrates increases the wear resistance and also limits the exceeding of critical levels of permanent stresses. It even increases the tool life many times over. Such a significant increase in tool life results, among other things, from a large increase in microhardness of PVD coated materials compared to uncoated samples, increased resistance to thermal and chemical abrasion, improved chip formation and removal process conditions. Use of hard coatings applied to sintered tool materials is considered to be one of the most important achievements in improving the functional properties of cutting tools and can still be developed by improving the coating structure solutions (sorted and nanocrystalline structures) and extending the range of coating applications (Ti,Al)N in a variety of substrates.


1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


2011 ◽  
Vol 250-253 ◽  
pp. 1856-1861
Author(s):  
Li Jun Lu ◽  
Jian Ping Liu ◽  
Zhong Mei Li

This paper focusing on the crack at hole of guyed-mast’s ear-plate connecting cables and shaft of guyed-mast, adopting two degree of freedom crack propagation model, track the crack propagation according to the increment of the deepest point and the surface point on the crack front of crack at hole of guyed-mast’s ear-plate. The stress intensity factors of I,II and III type crack with given shape and size have been calculated via finite element method, and a numerical method of calculating stress intensity factors with any shape and size crack has been proposed; furthermore according to modified I, II and III type compound crack propagation velocity formula on the basis of Paris crack propagation velocity formula, we analyzed the changing of crack shape parameter a/c with crack size parameter a/T of crack at hole of ear-plate connecting cable and shaft of guyed-mast by numerical integration method and obtained the propagation characteristic.


1998 ◽  
Vol 102 (3) ◽  
pp. 183-190 ◽  
Author(s):  
H.G. Prengel ◽  
W.R. Pfouts ◽  
A.T. Santhanam

Sign in / Sign up

Export Citation Format

Share Document