scholarly journals Surface-Related Kinetic Models for Anaerobic Digestion of Microcrystalline Cellulose: The Role of Particle Size

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 487
Author(s):  
Michał Piątek ◽  
Aleksander Lisowski ◽  
Magdalena Dąbrowska

In this work, for modelling the anaerobic digestion of microcrystalline cellulose, two surface-related models based on cylindrical and spherical particles were developed and compared with the first-order kinetics model. A unique dataset consisting of particles with different sizes, the same crystallinity and polymerisation degree was used to validate the models. Both newly developed models outperformed the first-order kinetics model. Analysis of the kinetic constant data revealed that particle size is a key factor determining the anaerobic digestion kinetics of crystalline cellulose. Hence, crystalline cellulose particle size should be considered in the development and optimization of lignocellulose pre-treatment methods. Further research is necessary for the assessment of impact of the crystalline cellulose particle size and surface properties on the microbial cellulose hydrolysis rate.

2020 ◽  
Vol 16 ◽  
Author(s):  
M. Alarjah

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole. Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in-vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method. Method: Chromatographic analysis was done using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37ºC. Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively. Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in-vivo study for the metronidazole derivatives with monoterpenes and eugenol.


2009 ◽  
Vol 59 (4) ◽  
pp. 823-832 ◽  
Author(s):  
Ye Changqing ◽  
Wang Dongsheng ◽  
Wu Xiaohong ◽  
Qu Jiuhui ◽  
John Gregory

The speciation of Al-OH complexes in terms of Ala, Alb and Alc could be achieved by traditional ferron assay and Alb is generally considered as Al13, however, the inherent correlation between them remains an enigma. This paper presents a modified ferron assay to get precise determination of Al13 using nonlinear least squares analysis, and to clarify the correlation between Alb and Al13. Two parallel reactions conforming to pseudo-first-order kinetics can simulate the complicate reactions between polynuclear complexes and ferron successfully. Four types of experimental kinetic constant (k value) of Al-OH complexes can be observed by this method when investigating three typical aluminium solutions. Comparing with the results of 27Al NMR, the species with moderate kinetics around 0.001 s−1 can be confirmed to resemble to Al13 polycation. The other types of kinetics are also well-regulated in partially neutralized aluminium solutions with various OH/Al ratios (b values) in the range 0 ∼ 2.5. It would provide potential means to trace the in-situ formation of Al13 in dilute solutions such as coagulation with Al-based coagulants


2009 ◽  
Vol 60 (1) ◽  
pp. 9-17 ◽  
Author(s):  
A. Donoso-Bravo ◽  
C. Retamal ◽  
M. Carballa ◽  
G. Ruiz-Filippi ◽  
R. Chamy

The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45°C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.


2013 ◽  
Vol 634-638 ◽  
pp. 76-80
Author(s):  
Wei Hu ◽  
Shen Xin Li ◽  
Cheng Duan Wang

The decolourization of dye wastewater by persulfate was studied using methylene blue as a model dye wastewater. Effects of several parameters, such as dose of oxidant, ionic strength, pH, temperature and UV irradiation, were investigated in detail. The results showed that the decolourization reaction of methylene blue by persulfate could be fitted to a pseudo-first order kinetics model. In addition, when the oxidant amount used is 2 times of methylene blue, pH 3.43 and reaction temperature for 60°C, after uv light under the irradiation of 20 min, methylene blue decolorization rate can reach more than 98%. The results are useful for the treatment of dye wastewater.


2017 ◽  
Vol 7 (4) ◽  
pp. 1189-1202
Author(s):  
Zoubeir Bensid

Modeling is an attempt to describe a natural event mathematically.  The modeling of N mineralization process has a dual interest, agronomical and ecological.  The objective of this study is to evaluate several mathematical models to describe the nitrogen mineralization process of soil samples. These samples were collected from 34 sites spatially distributed in the semi-arid region of El-Madher (the Aures area, north-east of Algeria). Using an auger, the systematic surveys have been carried out and composite samples of soils were collected in the field, and subjected to physical and chemical analyzes. In order to track the kinetic organic nitrogen mineralization, similar samples were collected and taken into cool boxes have been incubated in laboratory, sieved (2 mm) and stored at 4°C before use and then incubated at 28°C for 56 weeks. To facilate comparison, all results have been statistically analyzed, by nonlinear regression and analysis of variance method. Four empirical models were tested to fitt the value found experimentally. The linear kinetics model Nm=k t Ni, the single first-order kinetics model (MI) Nm = Ni e-kt + No (1 - e-kt), the double first-order and the exponential kinetics model (MII) Nm=Ni e-kt + No (1 - e-kt) + e-ht and the hyperbolic kinetics model (MH) Nm=NoH.t/(Tc+t) Ni were used to simulate the cumulative mineralized N (NH4+-N and NO3- -N) in the laboratory incubation. In order to test the performance and robustness of the different models three goodness of fit (coefficient of determination R2, Root Mean Square RMS and Mean Relative Error RMSE) were used. Moreover, the parameters obtained by the different models determined the predictions of nitrogen mineralization. The best results were obtained using the double first-order and exponential kinetics model. The results showed no significant difference between nitrogen mineralized for 56 weeks and nitrogen predicted by various models. However, the N predicted by the MII appears to be the best compared to other models. Indeed, the overestimation of nitrogen potentially mineralizable (N0) obtained by this model was relatively lower than other models. This has been confirmed by the study of multiple correlations between net mineral nitrogen and nitrogen predicted by each model. Thus, the results obtained showed a strong positive correlation between mineralized nitrogen values and those of nitrogen predicted by the different models. The correlation coefficients values indicate the folowing order MII (r = 0.878)> MI (r = 0.748)> MH (r = 0.709). The MII model has, therefore, highlighted that two pools of organic matter that mineralize simultaneously were detected in soil. One pool is stable and the other one is labile. One pool evolves with first-order kinetics and the other with exponential kinetics.


2013 ◽  
Vol 864-867 ◽  
pp. 256-260
Author(s):  
Wei Hu ◽  
Shen Xin Li ◽  
Wang Ying ◽  
Cheng Duan Wang

The decolourization of dye wastewater by persulfate was studied using kiscolon scarlet2KN as a model dye wastewater. Effects of several parameters, such as dose of oxidant, pH, temperature and UV irradiation, were investigated in detail. The results showed that the decolourization reaction of kiscolon scarlet2KN by persulfate could be fitted to a pseudo-first order kinetics model. In addition, when the oxidant amount used is 70 times of kiscolon scarlet2KN, pH 5.71 and reaction temperature for 70°C, kiscolon scarlet2KN decolorization rate can reach more than 98%. The results are useful for the treatment of dye wastewater.Keywords:Kiscolon scarlet 2KN, Decolourization, Persulfate


2019 ◽  
Vol 79 (5) ◽  
pp. 911-920 ◽  
Author(s):  
Jiamin Hu ◽  
Jing Zhang ◽  
Qingguo Wang ◽  
Qian Ye ◽  
Hao Xu ◽  
...  

Abstract In this study, the difference in oxidative capacity for removing antibiotics and the mechanism between the Cu(II)/peroxymonosulfate (PMS)/UV and Cu(II)/persulfate (PDS)/UV systems were compared under various conditions. The optimal Cu(II) concentration in the Cu(II)/PMS/UV system was 30 μM, and in the Cu(II)/PDS/UV system was 50 μM. With the PMS or PDS concentration increasing, higher tetracycline (TC) degradation in these two systems occurred. Investigation on the mechanism revealed that •OH was the primary radical in the Cu(II)/PMS/UV system, while SO4−• was the primary radical in the Cu(II)/PDS/UV system where •OH also played an important role. In these two systems, it was observed that Cu(I) was generated by PMS or PDS activated via UV illumination; however, oxygen alone could not promote TC removal. The degradation of TC was increased with the increasing pH level. In addition, TC degradation in the Cu(II)/PMS/UV system followed the pseudo-first-order kinetics model during the entire reaction period. It was found that the TC degradation kinetics in the Cu(II)/PDS/UV system can be divided into two parts (0 to 7 min and 10 to 50 min) and these two parts had good agreement with the pseudo-first-order kinetics model, respectively.


2018 ◽  
Vol 77 (5) ◽  
pp. 1397-1409 ◽  
Author(s):  
Marcelo Leite Conde Elaiuy ◽  
Aiduan Li Borrion ◽  
Davide Poggio ◽  
Julia Anna Stegemann ◽  
Edson Aparecido Abdul Nour

Abstract In this paper, we demonstrate in a clear procedure the application of the Anaerobic Digestion Model No. 1 (ADM1) to model a large-scale covered in-ground anaerobic reactor (Cigar), processing sugarcane vinasse from a biorefinery in Brazil. The biochemical make-up (carbohydrates, proteins, and lipids) of the substrate was analysed based on the food industry standards. Two distinct subsets of data, based on the sugarcane harvest season for bioethanol and sugar production in 2012 and 2014, were used to direct and cross validate the model, respectively. We fitted measured data by estimating two key parameters against biogas flow rate: the degradation extent (fd) and the first order hydrolysis rate coefficient (khyd). By cross validation we show that the fitted model can be generalised to represent the behaviour of the reactor under study. Therefore, motivated by practical and industrial application of ADM1, for both different reactors types and substrates, we show aspects on the implementation of ADM1 to a specific large-scale reactor for anaerobic digestion of sugarcane vinasse.


Sign in / Sign up

Export Citation Format

Share Document