scholarly journals Substituent-Adjusted Electrochromic Behavior of Symmetric Viologens

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1702
Author(s):  
Qun Zhang ◽  
Li Yuan ◽  
Fanglan Guan ◽  
Xin Li ◽  
Rui Wang ◽  
...  

As a promising electrochromic material, viologens have attracted increasing attention due to their high redox activity and adjustable electrochromic capability. In order to investigate the effect of alkyl substituents on electrochromic behavior, four alkyl-substituted viologens and a benzyl-substituted viologen were synthesized, namely 1,1′-dioctyl-4,4′-bipyridinium dibromide (OV), 1,1′-didekyl-4,4′-bipyridinium dibromide (DeV), 1,1′-didodecyl-4,4′-bipyridinium dibromide (DoV), 1,1′-dihexadecyl-4,4′-bipyridinium dibromide (HV), and 1,1′-dibenzyl-4,4′-bipyridinium dibromide (BV). The different photophysical and electrochemical properties of these viologens were attributed to their deviation in spatial structure caused by different substituents. Compared with benzyl-substituted BV, a slight blueshift occurred for the absorption peaks of alkyl-substituted viologens from 262 to 257 nm with the increase in alkyl chain length. Moreover, the first redox couple increased positively, and the dimerization of the compound decreased gradually, accompanied by the decrease in optical contrast and distinct chromatic difference. A comparison of chromatic and optical contrasts indicated that OV had the longest coloring response time (RTc), while it was shortest for HV. The bleaching response time (RTb) of viologen films gradually decreased with the alkyl chain length, and the OV film had the shortest RTb. Furthermore, when increasing the length of the alkyl chain, the cycling stabilities of alkyl viologens increased gradually. In addition, the OV film exhibited the best contrast after 200 continuous cycles.

2020 ◽  
Vol 8 (22) ◽  
pp. 7454-7462
Author(s):  
Sin-Yu Chen ◽  
Min-Hao Pai ◽  
Guey-Sheng Liou

A series of AIE-active and redox-active α-cyanostilbene-containing triphenylamine derivatives with different alkyl chain lengths and anions were successfully synthesized, and their optical, photoluminescent and electrochromic behaviors were investigated.


RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 60342-60348 ◽  
Author(s):  
Xuan Zhang ◽  
Xu-Dong Li ◽  
Li-Xia Ma ◽  
Bei Zhang

Flowerlike supramolecular architectures, obtained from a series of energetically PCBM-like and high C60 content (76–79%) fulleropyrrolidines FP1–FP4, were lamellar structures with alkyl chain length dependent thickness of a bilayer structure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1883
Author(s):  
Martin Pisárčik ◽  
Miloš Lukáč ◽  
Josef Jampílek ◽  
František Bilka ◽  
Andrea Bilková ◽  
...  

Phosphorus-containing heterocyclic cationic surfactants alkyldimethylphenylphospholium bromides with the alkyl chain length 14 to 18 carbon atoms were used for the stabilization of silver nanodispersions. Zeta potential of silver nanodispersions ranges from +35 to +70 mV, which indicates the formation of stable silver nanoparticles (AgNPs). Long-chain heptadecyl and octadecyl homologs of the surfactants series provided the most intensive stabilizing effect to AgNPs, resulting in high positive zeta potential values and smaller diameter of AgNPs in the range 50–60 nm. A comparison with non-heterocyclic alkyltrimethylphosphonium surfactants of the same alkyl chain length showed better stability and more positive zeta potential values for silver nanodispersions stabilized with heterocyclic phospholium surfactants. Investigations of biological activity of phospholium-capped AgNPs are represented by the studies of antimicrobial activity and cytotoxicity. While cytotoxicity results revealed an increased level of HepG2 cell growth inhibition as compared with the cytotoxicity level of silver-free surfactant solutions, no enhanced antimicrobial action of phospholium-capped AgNPs against microbial pathogens was observed. The comparison of cytotoxicity of AgNPs stabilized with various non-heterocyclic ammonium and phosphonium surfactants shows that AgNPs capped with heterocyclic alkyldimethylphenylphospholium and non-heterocyclic triphenyl-substituted phosphonium surfactants have the highest cytotoxicity among silver nanodispersions stabilized by the series of ammonium and phosphonium surfactants.


2021 ◽  
Vol 24 (1) ◽  
pp. 1229-1243
Author(s):  
Danai Charoensuk ◽  
Robert G. Brannan ◽  
Wilailuk Chaiyasit ◽  
Wanlop Chanasattru

Sign in / Sign up

Export Citation Format

Share Document