scholarly journals Sintering and Mechanical Properties of (SiC + TiCx)p/Fe Composites Synthesized from Ti3AlC2, SiC, and Fe Powders

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2453
Author(s):  
Mingtao Wang ◽  
Zecheng Wang ◽  
Zhiyue Yang ◽  
Jianfeng Jin ◽  
Guoping Ling ◽  
...  

Ceramic-particle-reinforced iron matrix composites (CPR-IMCs) have been used in many fields due to their excellent performance. In this study, using the fast resistance-sintering technology developed by our team, iron matrix composites (IMCs) reinforced by both SiC and TiCx particles were fabricated via the addition of SiC and Ti3AlC2 particles, and the resulting relative densities of the sintering products were up to 98%. The XRD and EDS analyses confirmed the in situ formation of the TiCx from the decomposition of Ti3AlC2 during sintering. A significant hybrid reinforcing effect was discovered in the (SiC + TiCx)p/Fe composites, where the experimental strength and hardness of the (SiC + TiCx)p/Fe composites were higher than the composites of monolithic SiCp/Fe and (TiCx)p/Fe. While, under the condition of constant particle content, the elongation of the samples reinforced using TiCx was the best, those reinforced by SiC was the lowest, and those reinforced by (SiC + TiCx) fell in between, which means the plastic response of (SiC + TiCx)p/Fe composites obeyed the rule of mixture. The successful preparation of IMCs based on the hybrid reinforcement mechanism provides an idea for the optimization of IMCs.

2012 ◽  
Vol 602-604 ◽  
pp. 456-459
Author(s):  
Jing Lai Tian ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Yun Hua Xu

In-situ production of (Fe,Cr)7C3 particulate bundles -reinforced iron matrix composite was prepared by infiltration casting between Cr wires and white cast iron at 1200°C plus subsequent heat treatment. The composites under different heat treatment times were comparatively characterized by scanning electron microscopy (SEM) and pin-on-disc wear resistance tests. The results show that the area of the particle bundles gradually increases with the heat treatment time increasing, and the chemical compositions change from eutectic to hypoeutectic, the morphologies of the reinforcements present chrysanthemum-shaped, granular and intercrystalline eutectics. Under 5 N loads, the composites appear excellent wear resistance, which is 36 times for the reference sample.


2011 ◽  
Vol 284-286 ◽  
pp. 273-276
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Xin Cheng Liu ◽  
Fang Xia Ye ◽  
Jing Lai Tian ◽  
...  

The method of infiltration casting plus heat treatment process employing chromium wires and cast iron applied to in-situ synthesized (Fe,Cr)7C3 particulates bundle reinforced iron matrix composites. The phase analysis, microstructure, microhardness and wear-resistance of composite were observed and measured. The results show that it is possible to fabricate (Fe,Cr)7C3 particulates bundle reinforced iron matrix composite produced by this technology, and a special structure which called particulates bundle was fabricated. (Fe,Cr)7C3 particulates bundle were distributed in the forms of granular, lath-shaped and hexagon-shaped in the particulates bundle. The macrohardness of particulates bundle was 52 HRC, and the relative wear resistance of the composites is 2.3—23 times higher than that of the cast iron.


2013 ◽  
Vol 652-654 ◽  
pp. 64-68 ◽  
Author(s):  
Jing Lai Tian ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Yun Hua Xu

In-situ production of (Fe,Cr)7C3 particulate bundles-reinforced iron matrix composites were prepared by infiltration casting between Cr wires and white cast iron at 1200°C plus subsequent heat treatment. The composites prepared under different heat treatment time were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), macrohardness test and pin-on-disc wear resistance test. The results show that the composite is mainly consist of (Fe,Cr)7C3 carbides and γ-Fe. The area of the particulate bundles gradually increases with the increase of heat treatment time, the microstructure evolved from eutectic to hypoeutectic, and the morphologies of the reinforcements present chrysanthemum-shaped, granular and intercrystalline eutectics, respectively. The (Fe,Cr)7C3 particulate bundles reinforced composite has high macrohardness and excellent wear resistance under dry sliding wear testing conditons.


2012 ◽  
Vol 217-219 ◽  
pp. 71-74
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Shu Yong Jiang ◽  
Hong Cheng

Iron matrix composite reinforced with VC reinforcements was produced by in situ synthesis technique. The microstructure of the composites was characterized by X-ray diffraction and scanning electron microscopy. The micrographs revealed the morphology and distribution of the reinforcements. The results show that the composite consists of VC carbide as the reinforcing phase and α-Fe as the matrix. The distribution of spherical VC particulates in iron matrix is uniform, and the matrix microstructure of Fe-VC composite is pearlite.


Sign in / Sign up

Export Citation Format

Share Document