Microstructure Evolution of In Situ Synthesized VC Reinforced Iron Matrix Composites

2012 ◽  
Vol 217-219 ◽  
pp. 71-74
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Shu Yong Jiang ◽  
Hong Cheng

Iron matrix composite reinforced with VC reinforcements was produced by in situ synthesis technique. The microstructure of the composites was characterized by X-ray diffraction and scanning electron microscopy. The micrographs revealed the morphology and distribution of the reinforcements. The results show that the composite consists of VC carbide as the reinforcing phase and α-Fe as the matrix. The distribution of spherical VC particulates in iron matrix is uniform, and the matrix microstructure of Fe-VC composite is pearlite.

2011 ◽  
Vol 52-54 ◽  
pp. 842-845 ◽  
Author(s):  
Jian Feng Zhu ◽  
Wen Wen Yang ◽  
Yi Ping Gong

TiAl/Ti2AlC in situ composite was successfully fabricated by hot-press-assisted reaction process from the mixture of Ti, Al and carbon black. The phase formation and transformation were investigated in detail by X-ray diffraction (XRD) and the morphology characteristics were also studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that when the mixed powders were hot pressed at 1300 °C for 1 h, full dense and highly pure TiAl/Ti2AlC composite was synthesized. The TiAl was the matrix phase and the in situ synthesized Ti2AlC was reinforcing phase. The reaction process was also discussed.


2011 ◽  
Vol 399-401 ◽  
pp. 425-429
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

Vanadium and chromium-carbide particulates reinforced iron matrix surface composite was produced by cast technique and in-situ synthesis technique. The microstructure of the surface composite was studied by scanning electron microscope(SEM) and X-ray diffraction(XRD). The results show that the production of an iron matrix surface composite reinforced by vanadium and chromium-carbide particulates using the process is feasible. Spherical VC particles and strip-chunky Cr7C3 are generated in the surface composite. An excellent metallurgy-bond is observed between the surface composite and the mater-steel.


2012 ◽  
Vol 457-458 ◽  
pp. 7-10 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yuan Hui Li

A powder metallurgy technique combined with in-situ synthesis technique was applied to produce (Ti,W)C particulates reinforced iron matrix composite. The sintered composites were characterized by X-ray diffraction and scanning electron microscopy. (Ti,W)C and α-Fe were detected by X-ray diffraction analysis. The scanning electron micrographs revealed the morphology and distribution of the reinforcements. The results show that the rectangular (Ti,W)C carbides are distributed uniformly in the composite. The (Ti,W)C/Fe matrix interface is found to be free from cracks and deleterious phases. The reasons for the formation of coarse (Ti,W)C particles were also discussed .


2007 ◽  
Vol 330-332 ◽  
pp. 329-332 ◽  
Author(s):  
Xiao Min Wang ◽  
Xu Dong Li ◽  
Gui Qiu Zheng ◽  
Xiao Liang Wang ◽  
Xing Dong Zhang ◽  
...  

Poly(vinyl alcohol) (PVA) was introduced during in situ synthesis of hydroxyapatite (HA) in neutral collagen (COL) solution and final PVA-COL-HA nanohybrids were achieved via sequential steps including gelation by fibrillogenesis, freezing-thawing physical crosslinking, removal of unreacted residues and dehydration. This method is expected to endow the pure PVA with good bioactivity and meanwhile the presence of elastic PVA would improve the properties of COL-HA composites. The phase, microstructure and possible molecular interactions of the achieved PVA-COL-HA nanohybrids were analyzed by using X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The results indicate that the inorganic phase is poorly crystallized apatite with a nanometer size due to the confinement of organic macromolecules which forms a network structure.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1979 ◽  
Author(s):  
Jing Zhang ◽  
Shibo Li ◽  
Shujun Hu ◽  
Yang Zhou

Ti3C2Tx MXene, a new 2D nanosheet material, is expected to be an attractive reinforcement of metal matrix composites because its surfaces are terminated with Ti and/or functional groups of –OH, –O, and –F which improve its wettability with metals. Thus, new Ti3C2Tx/Al composites with strong interfaces and novel properties are desired. To prepare such composites, the chemical stability of Ti3C2Tx with Al at high temperatures should be investigated. This work first reports on the chemical stability of Ti3C2Tx MXene with Al in the temperature range 500–700 °C. Ti3C2Tx is thermally stable with Al at temperatures below 700 °C, but it reacts with Al to form Al3Ti and TiC at temperatures above 700 °C. The chemical stability and microstructure of the Ti3C2Tx/Al samples were investigated by differential scanning calorimeter, X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744031
Author(s):  
Wenjing Chen ◽  
Hui Chen ◽  
Yongjing Wang ◽  
Congchen Li ◽  
Xiaoli Wang

The Ni–Cr–Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, [Formula: see text] phase, M[Formula: see text]C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2015 ◽  
Vol 1120-1121 ◽  
pp. 572-575
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Qiang Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

An innovative spray deposition technique has been applied to produce in situ TiB2/Zn-30Al-1Cu composites. The microstructures of the spray-deposited composite were studied using optical microscopy, scanning electron microscopy, and X-ray diffraction. Both theoretical and experimental results have shown that the TiB2particulates are formed in the microstructure. It was found that the TiB2particles were distributed in Zn-30Al-1Cu matrix uniformly, and the TiB2particles are about 2 μm in size. Moreover, the presence of the TiB2particles was led to increasing of α’ phase with less 2 μm size in the composites which have a tendency to decompose to α+η structure.


2005 ◽  
Vol 475-479 ◽  
pp. 2551-2554 ◽  
Author(s):  
Si Young Sung ◽  
Keun Chang Park ◽  
Myoung Gyun Kim ◽  
Young Jig Kim

The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape of the titanium matrix composites (TMCs) using a casting route. From the scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD) and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid TMCs could be obtained by the conventional casting route between titanium and B4C. No melts-mold reaction could be possible between (TiC+TiB) hybrid TMCs and the SKKU mold, since the mold is composed of interstitial and substitutional reaction products. Not only the sound in-situ synthesis but also the economic net-shape of TMCs could be possible by conventional casting route.


2015 ◽  
Vol 817 ◽  
pp. 593-598
Author(s):  
Yan Feng Liang ◽  
Sheng Quan Dong ◽  
Gao Hong Li

In situ TiCp/Al-4.5wt.%Cu composites have been coated using an electro-less Ni-P plating technique. The morphology and composition of the plating coating have been examined by scanning electron microscopy, optical microscopy, and X-ray diffraction. The results indicated that the coating had a high-phosphorus amorphous microstructure. The coatings microstructures showed significantly changes when the citric acid concentration in the chemical bath was varied in the range 16-20g/L.


Sign in / Sign up

Export Citation Format

Share Document