scholarly journals Effect of Particle Morphology on Stiffness, Strength and Volumetric Behavior of Rounded and Angular Natural Sand

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3023
Author(s):  
Aashish Sharma ◽  
Alexia R. Leib-Day ◽  
Mohmad Mohsin Thakur ◽  
Dayakar Penumadu

Stress–strain and volume change behavior for clean sands which have distinct particle shape (rounded and angular) with very similar chemical (mineralogical) composition, size, and texture in one-dimensional (1D) compression and drained triaxial compression are presented. The effect of particle morphology on the crushing behavior in one-dimensional loading is explored using laser light diffraction technique which is suitable for particle crushing because of its high resolution and small specimen volume capability. Particle size distribution in both volume/mass and number distributions are considered for improved understanding associated with the process of comminution. Number distributions present a clearer picture of particle crushing. It is argued that particle crushing in granular assemblies initiates in larger particles, rather than in smaller particle. It was found that rounded sand specimens showed greater crushing than angular sand specimens with higher uniformity coefficient. In 1D compression, loose specimens compress approximately 10% more than dense specimens irrespective of particle shape. Densification of angular sand results in improvement in stiffness (approximately 40%) and is comparable to that of loose rounded sand. In general, density has a greater influence on the behavior of granular materials than particle morphology. The effect of particle shape was found to be greater in loose specimens than in dense specimens. The effect of grain shape on critical state friction angle is also quantified.

2021 ◽  
Author(s):  
A. Grabowski ◽  
M. Nitka ◽  
J. Tejchman

AbstractThree-dimensional simulations of a monotonic quasi-static interface behaviour between initially dense cohesionless sand and a rigid wall of different roughness during tests in a parallelly guided direct shear test under constant normal stress are presented. Numerical modelling was carried out by the discrete element method (DEM) using clumps in the form of convex non-symmetric irregularly shaped grains. The clumps had an aspect ratio of 1.5. A regular grid of triangular grooves (asperities) along the wall with a different height at the same distance was assumed. The numerical results with clumps were directly compared under the same conditions with our earlier DEM simulations using pure spheres with contact moments with respect to the peak and residual interface friction angle, width of the interface shear zone, ratio between grain slips and grain rotations, distribution of contact forces and stresses. The difference between the behaviour of clumps and pure spheres with contact moments proved to be noticeable in the post-peak regime due to a different particle shape. The rolling resistance model with pure spheres was proved to be limited for capturing particle shape effects. Three different boundary conditions along the interface were proposed for micropolar continua, considering grain rotations and grain slips, wall grain moments and wall grain forces, and normalized interface roughness. The numerical results in this paper offer a better understanding of the interface behaviour of granular bodies in DEM and FEM simulations.


2016 ◽  
Vol 53 (10) ◽  
pp. 1583-1599 ◽  
Author(s):  
David Kurz ◽  
Jitendra Sharma ◽  
Marolo Alfaro ◽  
Jim Graham

Clays exhibit creep in compression and shear. In one-dimensional compression, creep is commonly known as “secondary compression” even though it is also a significant component of deformations resulting from shear straining. It reflects viscous behaviour in clays and therefore depends on load duration, stress level, the ratio of shear stress to compression stress, strain rate, and temperature. Research described in the paper partitions strains into elastic (recoverable) and plastic (nonrecoverable) components. The plastic component includes viscous strains defined by a creep rate coefficient ψ that varies with plasticity index and temperature (T), but not with stress level or overconsolidation ratio (OCR). Earlier elastic–viscoplastic (EVP) models have been modified so that ψ = ψ(T) in a new elastic–thermoviscoplastic (ETVP) model. The paper provides a sensitivity analysis of simulated results from undrained (CIŪ) triaxial compression tests for normally consolidated and lightly overconsolidated clays. Axial strain rates range from 0.15%/day to 15%/day, and temperatures from 28 to 100 °C.


2013 ◽  
Vol 1 (1) ◽  
pp. 1187-1208 ◽  
Author(s):  
N. Stark ◽  
A. E. Hay ◽  
R. Cheel ◽  
C. B. Lake

Abstract. The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ &amp;approx; 41–46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Chaojie Shen ◽  
Zhaoyang Xu ◽  
Jie Yin ◽  
Jinfeng Wu

The minimum void ratio is a fundamental physical index for evaluating particle properties in soil mechanics, ceramic processing, and concrete mixes. Previous research found that both particle size distribution and particle shape characteristics would affect minimum void ratio, while the current research generally uses a linear model to estimate the minimum void ratio of a binary mixture, ignoring quantitative effect of particle shape on the minimum void ratio. Based on a study of binary mixtures of natural sand from three different origins and iron particles of two different shapes, this paper analyzes the influence factors of the minimum void ratio, and a quadratic nonlinear model is proposed for estimating the minimum void ratio of binary mixture. The model contains only one undetermined coefficient, a, the value of which is correlated to the particle sphericity, particle size, and particle size ratio. A theoretical calculation formula for the coefficient a is proposed to quantitatively analyze the effects of these three factors on the size of the parameters. In the end, the model is used to estimate the minimum void ratios of sand and substitute particles from different producing areas; the average difference between the estimated values and the fitted values is about 2.03%, suggesting that the estimated values of the model fit well with the measured data.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


2019 ◽  
Vol 92 ◽  
pp. 09004 ◽  
Author(s):  
Zenon Szypcio

The influence of particle breakage on soil behaviour is important from theoretical and practical perspectives. Particle breakage changes the internal energy in two ways. First, internal energy is consumed for particle crushing and second, the internal energy changes because of additional volumetric strain caused by particle crushing. These two effects may be quantified by use of Frictional State Theory. The analysed drained triaxial compression tests of Toyoura sand, gravel and Dog's Bay sand at different stress level and stress path revealed that the effect of particle breakage is a function of soil gradation, strength of soil grains, stress level and stress path.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Zenon Szypcio

The strength of sand is usually characterized by the maximum value of the secant friction angle. The friction angle is a function of deformation mode, density, and stress level and is strongly correlated with dilatancy at failure. Most often, the friction angle is evaluated from results of conventional compression tests, and correlation between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions is a vital problem of soil mechanics. These correlations can be obtained from laboratory test results. The failure criteria for sand presented in literature also give the possibility of finding correlations between friction angles for different deformation modes. The general stress-dilatancy relationship obtained from the frictional state concept, with some additional assumptions, gives the possibility of finding theoretical relationships between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions. The theoretically obtained relationships presented in the paper are fully consistent with theoretical and experimental findings of soil mechanics.


Sign in / Sign up

Export Citation Format

Share Document