scholarly journals A Novel Surface Modification Strategy via Photopolymerized Poly-Sulfobetaine Methacrylate Coating to Prevent Bacterial Adhesion on Titanium Surfaces

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3303
Author(s):  
Aydin Gülses ◽  
Antonia Lopar ◽  
Martha Es-Souni ◽  
Marie Emmert ◽  
Mona Es-Souni ◽  
...  

Recent investigations on the anti-adhesive properties of polysulfobetaine methacrylate (pSBMA) coatings had shown promising potential as antifouling surfaces and have given the impetus for the present paper, where a pSBMA coating is applied via photopolymerization on a macro-roughened, sandblasted, and acid-etched titanium implant surface in order to assess its antifouling properties. Current emphasis is placed on how the coating is efficient against the adhesion of Enterococcus faecalis by quantitative assessment of colony forming units and qualitative investigation of fluorescence imaging and scanning electron microscopy. pSBMA coatings via photopolymerization of titanium surfaces seems to be a promising antiadhesion strategy, which should bring substantial benefits once certain aspects such as biodegradation and osseointegration were addressed. Additionally, commercial SAL-titanium substrates may be coated with the super-hydrophilic coating, appearing resistant to physiological salt concentrations and most importantly lowering E. faecalis colonization significantly, compared to titanium substrates in the as-received state. It is very likely that pSBMA coatings may also prevent the adhesion of other germs.

2008 ◽  
Vol 21 (03) ◽  
pp. 202-210 ◽  
Author(s):  
J. Langhoff ◽  
J. Mayer ◽  
L. Faber ◽  
S. Kaestner ◽  
G. Guibert ◽  
...  

Summary Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods: The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX™). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. Results: The new surface anodized screws demonstrated similar or slightly higher bone-implantcontact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p=0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p=0.06). Conclusion: The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.


2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2015 ◽  
Vol 19 (7) ◽  
pp. 1699-1699 ◽  
Author(s):  
José Luis Calvo-Guirado ◽  
Marta Satorres ◽  
Bruno Negri ◽  
Piedad Ramirez-Fernandez ◽  
Jose Eduardo Maté-Sánchez de Val ◽  
...  

2018 ◽  
Vol 18 (12) ◽  
pp. 8016-8028 ◽  
Author(s):  
Xingying Qi† ◽  
Yuli Shang ◽  
Lei Sui

Titanium is a primary metallic biomaterial widely used in dental implants because of its favorable mechanical properties and osseointegration capability. Currently, increasing interests have been taken in the interaction between titanium implant surface and surrounding bone tissue, particularly in surface topographical aspect. There are currently several techniques developed to modify surface topographies in the world market of dental implant. In this review, state of titanium implant surfaces in topographical aspect is presented from relatively smooth surfaces to rougher ones with microtopographies and/or nanotopographies. Each surface is summarized with basic elaborations, preparation methods, mechanisms for cellular responses and current availabilities. It has been demonstrated that rough surfaces evolving from micro- to nano-scale, especially hierarchical micro-and nanotopographies, are favorable for faster and stronger osseointegration. Further experimental and clinical investigations will aid in the optimization of surface topography and clinical selection of suitable implants.


2019 ◽  
Vol 30 (S19) ◽  
pp. 213-213
Author(s):  
Sergio Gehrke ◽  
Leticia Pèrez‐DÌaz ◽  
Patricia Mazon ◽  
Piedad N. de Aza

Sign in / Sign up

Export Citation Format

Share Document