scholarly journals Comparison of Tensile Strength and Fracture Toughness of Co-Bonded and Cold-Bonded Carbon Fiber Laminate-Aluminum Adhesive Joints

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3778
Author(s):  
Fabrizio Moroni ◽  
Alessandro Pirondi ◽  
Chiara Pernechele ◽  
Luca Vescovi

The purpose of this work is to compare the co-bonding vs. cold-bonding route on the adhesive joint performance of a CFRP (Carbon Fiber Reinforced Polymer) laminate–aluminum connection. In particular, the overlap shear, tensile strength and Mode I and Mode II fracture toughness will be evaluated. The adhesives for co-bonding and cold-bonding are, respectively, a thermosetting modified epoxy, unsupported structural film and a two-component epoxy adhesive, chosen as representative of applications in the high-performance/race car field. The emerging trend is that, in tensile e Mode I fracture tests, the failure path is predominantly in the composite. Mode II fracture tests instead resulted in a cohesive fracture, meaning that, under pure shear loading, the weakest link may not be the composite. The lap-shear tests are placed midway (cohesive failure for co-bonding and composite delamination for cold-bonding, respectively), probably due to the different peel stress values related to the different adhesive Young’s modulus. The exploitation of the full capacity of the adhesive joint, hence the possibility of highlighting better, different performances of co-bonding vs. cold-bonding, would require consistent improvement of the out-of-plane strength of the CFRP laminate and/or to someway redistribute the peel stress on the bondline.

1991 ◽  
Vol 149 (1) ◽  
pp. L1-L3 ◽  
Author(s):  
S.V. Kamat ◽  
N. Eswara Prasad ◽  
G. Malakondaiah

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2396
Author(s):  
Julia Hutschreuther ◽  
Raphael Kunz ◽  
Josef Breu ◽  
Volker Altstädt

Carbon-fiber-reinforced epoxies are frequently used for lightweight applications that require high mechanical properties. Still, there is potential regarding the improvement of the interlaminar-fracture toughness. As matrix toughening with nanoparticles is one possibility, in this study two different layered silicates are used to reinforce carbon fiber composites. The first type is a synthetical K-Hectorite (K-Hect) with outstanding lateral extension (6 µm) that has shown high toughening ability in resins in previous work. The other is a commercial montmorillonite (MMT) with a smaller size (400 nm). The aim of this study is to show the influence of the particles on mode I and mode II fracture toughness, especially the influence of particle size. Therefore, double-cantilever-beam tests and end-notched-flexure tests were carried out. Additionally, the fracture mechanisms were investigated via scanning electron microscopy (SEM). It is concluded, that the larger Hectorite particles are beneficial for mode I fracture behavior because of enhanced toughening mechanisms. One the other hand, the mode II energy dissipation rate is increased by the smaller montmorillonite particles due to sufficient interaction with the formation of hackling structures.


Sign in / Sign up

Export Citation Format

Share Document