scholarly journals Characterization of Desulfurized Crumb Rubber/Styrene–Butadiene–Styrene Composite Modified Asphalt Based on Rheological Properties

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3780
Author(s):  
Jingyao Yang ◽  
Gang Xu ◽  
Peipei Kong ◽  
Xianhua Chen

With the growing interest in bituminous construction materials, desulfurized crumb rubber (CR)/styrene–butadiene–styrene (SBS) modified asphalts have been investigated by many researchers as low-cost environmental-friendly road construction materials. This study aimed to investigate the rheological properties of desulfurized CR/SBS composite modified asphalt within various temperature ranges. Bending beam rheometer (BBR), linear amplitude sweep (LAS), and multiple stress creep recovery (MSCR) tests were performed on conventional CR/SBS composite modified asphalt and five types of desulfurized CR/SBS modified asphalts. Meanwhile, Burgers’ model and the Kelvin–Voigt model were used to derive nonlinear viscoelastic parameters and analyze the viscoelastic mechanical behavior of the asphalts. The experimental results indicate that both the desulfurized CR/SBS composite modifier and force chemical reactor technique can enhance the crosslinking of CR and SBS copolymer, resulting in an improved high-, intermediate-, and low-temperature performance of desulfurized CR/SBS composite modified asphalt. Burgers’ model was found to be apposite in simulating the creep stages obtained from MSCR tests for CR/SBS composite modified asphalts. The superior high-temperature performance of desulfurized CR/SBS modified asphalt prepared with 4% SBS, 20% desulfurized rubber, and a force chemical reactor time of 45 min contributes to the good high-temperature elastic properties of the asphalt. Therefore, this combination is recommended as an optimal preparation process. In summary, the desulfurization of crumb rubber and using the force chemical reactor technique are beneficial to composite asphalt performance and can provide a new way of utilizing waste tire rubber.

2013 ◽  
Vol 848 ◽  
pp. 26-30
Author(s):  
Fu Qiang Dong ◽  
Wen Zhe Zhao ◽  
Yu Zhen Zhang ◽  
Hua Dong Sun ◽  
Wei Yu Fan ◽  
...  

This paper presents a laboratory study of Styrene-Butadiene-Styrene (SBS)/ crumb rubber modified asphalt by the two-step method. The conventional properties of the modified asphalt were determined. The effects of crumb rubber content and shearing time on the performance of the crumb rubber modified asphalt and composite modified asphalt. The results show that the crumb rubber contents and shearing time have significant impacts on the performance of the modified asphalt. With the crumb rubber content increasing, the high temperature performance was improved and the low temperature chanethe softening point increases and penetration decrease, and the ductility change little. It is comfortable for workability at the crumb rubber content of 20%. The viscosity is an important measurement for the workability of the modified asphalt. After adding the stabilizer, the viscosity increases until the shearing time reaching 1.5h, then it will decrease gradually.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xueqian Li ◽  
Jianzhong Pei ◽  
Jiujian Shen ◽  
Rui Li

The high-performance asphalt materials are used to replace the ordinary road asphalt that cannot meet the requirements of natural environment and traffic situation, which is the effective way to solve poor asphalt pavement durability. In this paper, polyphosphoric acid- (PPA-) modified asphalt and polyphosphoric acid (PPA)/styrene-butadiene-styrene (SBS) composite-modified asphalt with different PPA content were prepared by using two-type asphalt. The effect of PPA modifier on asphalt was analyzed by using the creep elastic recovery rate, accumulating strain and creep modulus tests. The results showed that asphalt types and the PPA could significantly improve the elastic recovery rate of asphalt, reduce the cumulative strain and creep stiffness of the viscosity part, improve the high-temperature performance, and reduce the permanent deformation of the asphalt under repeated load. The high-temperature performance and low-temperature performance of PPA-modified asphalt were studied by the chemical and physical modification techniques. The advantages of modified asphalt are well developed while reducing the price of it, which has important technical and economic significance.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2345 ◽  
Author(s):  
Yangsheng Ye ◽  
Gang Xu ◽  
Liangwei Lou ◽  
Xianhua Chen ◽  
Degou Cai ◽  
...  

In this study, a new type of composite modified bitumen was developed by blending styrene-butadiene-styrene (SBS) and crumb rubber (CR) with a chemical method to satisfy the durability requirements of waterproofing material in the waterproofing layer of high-speed railway subgrade. A pressure-aging-vessel test for 20, 40 and 80 h were conducted to obtain bitumen samples in different long-term aging conditions. Multiple stress creep recovery (MSCR) tests, linear amplitude scanning tests and bending beam rheometer tests were conducted on three kinds of asphalt binders (SBS modified asphalt, CR modified asphalt and SBS/CR composite modified asphalt) after different long-term aging processes, including high temperature permanent deformation performance, resistance to low temperature thermal and fatigue crack. Meanwhile, aging sensitivities were compared by different rheological indices. Results showed that SBS/CR composite modified asphalt possessed the best properties before and after aging. The elastic property of CR in SBS/CR composite modified asphalt improved the ability to resist low temperature thermal and fatigue cracks at a range of low and middle temperatures. Simultaneously, the copolymer network of SBS and CR significantly improved the elastic response of the asphalt SBS/CR modified asphalt at a range of high temperatures. Furthermore, all test results indicated that the SBS/CR modified asphalt possesses the outstanding ability to anti-aging. SBS/CR is an ideal kind of asphalt to satisfy the demand of 60 years of service life in the subgrade of high speed railway.


2013 ◽  
Vol 753-755 ◽  
pp. 734-740 ◽  
Author(s):  
Li Wan ◽  
Shao Peng Wu ◽  
Min Lei ◽  
Kim Jenkins

Currently, rejuvenator seal which is one of the preventive maintenance methods is more widely used due to its economic benefits and convenience. This paper described the chemical and rheological evaluation of the aged styrene butadiene styrene modified asphalt (ASMA) treated by two rejuvenator sealer materials (RSMs). First the ASMA was rejuvenated by mixing with the RSMs. Then the ASMA and two rejuvenated binders were re-aged by 10h PAV test. At last, the new binder, ASMA, rejuvenated ASMAs, re-aged binders were tested by Dynamic shear rheometer (DSR) and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the first aging of the new binder had a significant decrease of the low temperature performance and slight improvement of the high temperature performance. In addition, the high temperature performance increased obviously after 10h PAV test. Two RSMs could significantly soften the aged binder due to increase of maltene content existing in the RSMs, and the rejuvenated binder exhibited a better low performance after the 10h PAV test. However they cannot restore the low temperature completely because that RSMs cannot remedy the degradation of SBS modifier and remove the carbonyl produced in the aging progress.


2013 ◽  
Vol 753-755 ◽  
pp. 715-718
Author(s):  
Xiu Hua Yang

SBS is a styrene - butadiene - styrene block copolymer, the addition of SBS of high and low temperature performance and road can be very good to improve the performance of asphalt. This paper studied the performance of the modified asphalt on the content of modifier.


Author(s):  
Jiqing Zhu ◽  
Xiaohu Lu

AbstractDifferent microstructures of the same polymer-modified bitumen (PMB) were obtained by subjecting the bitumen modified with styrene-butadiene-styrene (SBS) copolymer to isothermal annealing at various temperatures. The effects of the morphology on the rheological properties of SBS-modified bitumen were investigated within the high-temperature range. The PMB microstructures were quantitatively evaluated using image analysis. A dynamic shear rheometer was used to measure the rheological parameters of the PMB samples and perform the multiple stress creep and recovery (MSCR) test. A quantitative basis could be established on which to discuss the relationship between the PMB morphology and rheology. The image analysis indicated that conditioning by isothermal annealing evidently led to a difference in the microstructure of the samples. Variation of the thermal history is demonstrated to be a practical way to vary the morphology of the PMB with the same raw materials and formulation. Compared with the two-phase morphology, the single-phase microstructure tended to have a narrower linear viscoelastic (LVE) region of the PMB. Within the LVE region, especially at low frequencies, the homogenous PMB can store more energy when experiencing loadings and is more elastic. Outside the LVE region, based on the MSCR test results, the homogenous morphology could assist in reaching a higher percentage of strain recovery after the creep period.


Sign in / Sign up

Export Citation Format

Share Document