High-Temperature Performance of Crumb Rubber Modified Asphalt with Different Content Based on Rheological Properties

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Fei Pan ◽  
Yanqiu Bi ◽  
Ruyi Wei ◽  
Jianzhong Pei ◽  
Jiupeng Zhang
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3780
Author(s):  
Jingyao Yang ◽  
Gang Xu ◽  
Peipei Kong ◽  
Xianhua Chen

With the growing interest in bituminous construction materials, desulfurized crumb rubber (CR)/styrene–butadiene–styrene (SBS) modified asphalts have been investigated by many researchers as low-cost environmental-friendly road construction materials. This study aimed to investigate the rheological properties of desulfurized CR/SBS composite modified asphalt within various temperature ranges. Bending beam rheometer (BBR), linear amplitude sweep (LAS), and multiple stress creep recovery (MSCR) tests were performed on conventional CR/SBS composite modified asphalt and five types of desulfurized CR/SBS modified asphalts. Meanwhile, Burgers’ model and the Kelvin–Voigt model were used to derive nonlinear viscoelastic parameters and analyze the viscoelastic mechanical behavior of the asphalts. The experimental results indicate that both the desulfurized CR/SBS composite modifier and force chemical reactor technique can enhance the crosslinking of CR and SBS copolymer, resulting in an improved high-, intermediate-, and low-temperature performance of desulfurized CR/SBS composite modified asphalt. Burgers’ model was found to be apposite in simulating the creep stages obtained from MSCR tests for CR/SBS composite modified asphalts. The superior high-temperature performance of desulfurized CR/SBS modified asphalt prepared with 4% SBS, 20% desulfurized rubber, and a force chemical reactor time of 45 min contributes to the good high-temperature elastic properties of the asphalt. Therefore, this combination is recommended as an optimal preparation process. In summary, the desulfurization of crumb rubber and using the force chemical reactor technique are beneficial to composite asphalt performance and can provide a new way of utilizing waste tire rubber.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1145
Author(s):  
Wei Li ◽  
Sen Han ◽  
Xiaokang Fu ◽  
Ke Huang

The aims of this paper are to prepare disintegrated high volume crumb rubber asphalt (DHVRA) with low viscosity, good workability and low-temperature performance by adding disintegrating agent (DA) in the preparation process, and to further analyze the disintegrating mechanism and evaluated high-temperature and low-temperature rheological properties. To obtain DHVRA with excellent comprehensive performance, the optimum DA dosage was determined. Based on long-term disintegrating tests and the Fluorescence Microscopy (FM) method, the correlations between key indexes and crumb rubber (CR) particle diameter was analyzed, and the evaluation indicator and disintegrating stage division standard were put forward. Furthermore, Fourier transform infrared spectroscopy (FT-IR) and Gel Permeation Chromatography (GPC) was used to reveal the reaction mechanism, and the contact angle test method was adopted to evaluate the surface free energy (SFE). In addition, the high-temperature and low-temperature rheological properties were measured, and the optimum CR content was proposed. Results indicated that the optimum DA dosage was 7.5‰, and the addition of DA promoted the melt decomposition of CR, reduced the viscosity and improved the storage stability. The 135 °C rotational viscosity (RV) of DHVRA from mixing for 3 h could be reduced to 1.475 Pa·s, and the softening point difference was even less than 2 °C. The linear correlation between 135 °C RV and the diameter of CR particle in rubber asphalt system was as high as 0.968, and the viscosity decay rate (VDR) was used as the standard to divide the disintegrating process into a fast disintegrating stage, stable disintegrating stage and slight disintegrating stage. Compared to common rubber asphalt (CRA), DHVRA has an absorption peak at 960 cm−1 caused by trans olefin = C-H, and higher molecular weight and polar component of surface energy. Compared with CRA, although the high-temperature performance of DHVRA decreases slightly, the low-temperature relaxation ability can be greatly improved.


2013 ◽  
Vol 848 ◽  
pp. 26-30
Author(s):  
Fu Qiang Dong ◽  
Wen Zhe Zhao ◽  
Yu Zhen Zhang ◽  
Hua Dong Sun ◽  
Wei Yu Fan ◽  
...  

This paper presents a laboratory study of Styrene-Butadiene-Styrene (SBS)/ crumb rubber modified asphalt by the two-step method. The conventional properties of the modified asphalt were determined. The effects of crumb rubber content and shearing time on the performance of the crumb rubber modified asphalt and composite modified asphalt. The results show that the crumb rubber contents and shearing time have significant impacts on the performance of the modified asphalt. With the crumb rubber content increasing, the high temperature performance was improved and the low temperature chanethe softening point increases and penetration decrease, and the ductility change little. It is comfortable for workability at the crumb rubber content of 20%. The viscosity is an important measurement for the workability of the modified asphalt. After adding the stabilizer, the viscosity increases until the shearing time reaching 1.5h, then it will decrease gradually.


2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yongchun Cheng ◽  
Chunfeng Zhu ◽  
Guojin Tan ◽  
Zehua Lv ◽  
Jinsheng Yang ◽  
...  

In order to improve the performance of asphalt mastic, some researchers have added diatomite or basalt fiber as a modifier to the asphalt mastic, and the results show that some properties of the asphalt mastic were improved. For the simultaneous addition of diatomite and basalt fiber, two kinds of modifier, compound modified asphalt mastic had not been reported; in this paper, thirteen groups of diatomite and basalt fiber (DBFCMAM) compound modified asphalt mastic with different content were prepared to study the performance. Softening point, cone penetration, viscosity, and DSR tests were conducted, for the high temperature performance evaluation of DBFCMAM, whereas force ductility and BBR tests were used in the low temperature performance study of the DBFCMAM. The results demonstrated that the high temperature performance of DBFCMAM was increased; moreover, the low temperature performance of DBFCMAM improved by diatomite and basalt fiber according to the results of the force ductility test; however, the conclusion of the BBR test data was inconsistent with the force ductility test. In summary, the high temperature and low temperature properties of DBFCMAM had been improved.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3986
Author(s):  
Huan-Yun Zhou ◽  
Huai-Bing Dou ◽  
Xian-Hua Chen

Aiming to improve the comprehensive road performance of asphalt binders, especially the high-temperature performance, a novel asphalt binder was prepared by compounding high-quality and low-cost polyethylene (PE) with graphene (GNPs) using a high-speed shearing machine. The rheological properties and interaction mechanism of PE/GNPs composite modified asphalt were investigated using temperature sweep (TeS), multiple stress creep recovery (MSCR), linear amplitude sweep (LAS) and Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). The experimental results demonstrated that GNPs and PE can synergistically improve the high-temperature performance of asphalt binders and enhance the rutting resistance of pavements; the pre-blended PE/GNPs masterbatch has good medium-temperature fatigue and low-temperature cracking resistance. Meanwhile, PE/GNPs dispersed uniformly in the asphalt matrix, and the microstructure and dispersion of premixed PE/GNPs masterbatch facilitated the asphalt modification. No new absorption peaks appeared in the FT-IR spectra of the composite modified asphalt, indicating that asphalt binders were physically modified with GNPs and PE. These findings may cast light on the feasibility of polyethylene/graphene composite for asphalt modification.


2016 ◽  
Vol 112 ◽  
pp. 49-58 ◽  
Author(s):  
Ouming Xu ◽  
Feipeng Xiao ◽  
Sen Han ◽  
Serji N. Amirkhanian ◽  
Zhenjun Wang

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangyuan Wu ◽  
Haitao Zhang ◽  
Junfeng Sun ◽  
Tengjiang Yu

Purpose In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt. Design/methodology/approach Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance. Findings The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area. Originality/value Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjing Zhou ◽  
Yihan Sun ◽  
Fengxia Chi ◽  
Qinling Cheng ◽  
Bo Han

High-viscosity modified asphalt (HVA) is widely used as the binder for permeable asphalt pavement, and hydrated lime (HL) attracts a strong technical interest as an effective moisture additive in asphalt for a long time. However, the application of HL in HVA has been rarely studied. The present study evaluates the influence of HL on the high-temperature rheological properties of HVA and selects the optimum HL content and fineness. The asphalt mortars of HVA and HL of different contents and fineness were prepared. Temperature scanning (DSR-TS), multiple stress creep recovery (MSCR) by using a dynamic shear rheometer, and scanning electron microscope (SEM) tests were carried out to evaluate the high-temperature rheological properties and microstructure morphology characteristics of the asphalt mortars. Based on the DSR-TS and MSCR tests, the results showed that high-temperature performance together with the ability to deformation resistance of HVA was improved apparently with the increase of the HL content. When the HL content is above 1.2, the stress sensitivity of HVA is lower. The SEM results clearly showed that the uniformity of asphalt mortars could be effectively guaranteed when the HL content was 1.2 and the fineness was 800 mesh. The HL fineness has little effect on the high-temperature performance of HVA. In summary, taking into account the high-temperature performance and microstructure of HVA with HL, the optimum HL content and fineness could be finally determined.


Sign in / Sign up

Export Citation Format

Share Document