scholarly journals Energy Structure and Luminescence of CeF3 Crystals

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4243
Author(s):  
Orest Kochan ◽  
Yaroslav Chornodolskyy ◽  
Jarosław Selech ◽  
Vladyslav Karnaushenko ◽  
Кrzysztof Przystupa ◽  
...  

The results of the calculation of the energy band structure and luminescent research of CeF3 crystals are presented. The existence of two 5d1 and 5d2 subbands of the conduction band genetically derived from 5d states of Ce3+ ions with different effective electron masses of 4.9 me and 0.9 me, respectively, is revealed. The large electron effective mass in the 5d1 subband facilitates the localization of electronic excitations forming the 4f-5d cerium Frenkel self-trapped excitons responsible for the CeF3 luminescence. The structure of the excitation spectra of the exciton luminescence peaked at 290 nm, and the defect luminescence at 340 nm confirms the aforementioned calculated features of the conduction band of CeF3 crystals. The peculiarities of the excitation spectra of the luminescence of CaF2:Ce crystals dependent on the cerium concentration are considered with respect to the phase formation possibility of CeF3.

2011 ◽  
Vol 233-235 ◽  
pp. 2119-2124
Author(s):  
Xiao Qing Liu ◽  
Rui Fang Zhang ◽  
Yi Guo Su ◽  
Xiao Jing Wang

The energy bands of La -doped ZnO were studied systematically by the density functional theory (DFT). Based on the data of the band structure, DOS (Density of State) and PDOS( Partial Density of States), atomic populations and net charge, the influence on the energy band structure of the macrostructure of ZnO and La-doped ZnO was investigated. The results showed that the free electrons were produced by the doping of La on (or in) ZnO crystal. The Fermi energy was shifted up to the conduction band, making the ZnO particles having the characters of degenerated semiconductor. The excitation from impurity states to the conduction band may account for the blue shift of the absorption edge in the model of La-doped ZnO. Comparison with the different models of the La doped/loaded on the ZnO surface, La atoms loaded on the surface of ZnO and La atoms replaced of Zn atoms on the ZnO surface, the shift to the lower energy location were found after La doping/loading. The more shift and the large band gap was found for the model of La doped on the Zn position in the ZnO crystal.


1973 ◽  
Vol 35 (2) ◽  
pp. 525-533 ◽  
Author(s):  
Hitoshi Shinno ◽  
Ryozo Yoshizaki ◽  
Shoji Tanaka ◽  
Takao Doi ◽  
Hiroshi Kamimura

1967 ◽  
Vol 22 (2) ◽  
pp. 491-497 ◽  
Author(s):  
D. J. Morgan ◽  
J. A. Galloway

1997 ◽  
Vol 11 (11) ◽  
pp. 477-483 ◽  
Author(s):  
Z. J. Li ◽  
H. B. Xu ◽  
K. L. Yao

Starting from the extensional Su–Schrieffer–Heeger model taking into account the effects of interchain coupling, we have studied the energy spectra and electronic states of soliton excitation in polyacene. The dimerized displacement u0 is found to be similar to the case of trans-polyacetylene, and equals to 0.04 Å. The energy-band gap is 0.38 eV, in agreement with the results derived by other authors. Two new bound electronic states have been found in the conduction band and in the valence band, which is different from the one of trans-polyacetylene. There exists two degenerate soliton states in the center of energy gap. Furthermore, the distribution of charge density and spin density have been discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document