scholarly journals FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4303
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Micael F. Borges ◽  
Diogo M. Neto

Fatigue is one of the most prevalent mechanisms of failure. Thus, the evaluation of the fatigue crack growth process is fundamental in engineering applications subjected to cyclic loads. The fatigue crack growth rate is usually accessed through the da/dN-ΔK curves, which have some well-known limitations. In this study a numerical model that uses the cyclic plastic strain at the crack tip to predict da/dN was coupled with the Gurson–Tvergaard–Needleman (GTN) damage model. The crack propagation process occurs, by node release, when the cumulative plastic strain reaches a critical value. The GTN model is used to account for the material degradation due to the growth of micro-voids process, which affects fatigue crack growth. Predictions with GTN are compared with the ones obtained without this ductile fracture model. Crack closure was studied in order to justify the lower values of da/dN obtained in the model with GTN, when compared with the results without GTN, for lower ΔK values. Finally, the accuracy of both variants of the numerical model is accessed through the comparison with experimental results.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1133
Author(s):  
Fábio F. Ferreira ◽  
Diogo M. Neto ◽  
Joel S. Jesus ◽  
Pedro A. Prates ◽  
Fernando V. Antunes

This study presents a numerical model to predict the fatigue crack growth (FCG) rate in compact tension specimens under constant amplitude cyclic loadings. The material studied is the Ti-6Al-4V titanium alloy produced by selective laser melting, which was submitted to two different post-treatments: (i) hot isostatic pressing, and (ii) heat treatment. The developed finite element model uses the cumulative plastic strain at the crack tip to define the nodal release. Two different FCG criteria are presented, namely the incremental plastic strain (IPS) criterion and the total plastic strain (TPS) criterion. The calibration of the elasto-plastic constitutive model was carried out using experimental data from low cycle fatigue tests of smooth specimens. For both proposed crack growth criteria, the predicted da/dN-ΔK curve is approximately linear in log-log scale. However, the slope of the curve is higher using the TPS criterion. The numerical predictions of the crack growth rate are in good agreement with the experimental results, which indicates that cyclic plastic deformation is the main damage mechanism. The numerical results showed that increasing the stress ratio leads to a shift up of the da/dN-ΔK curve. The effect of stress ratio was dissociated from variations of cyclic plastic deformation, and an extrinsic mechanism, i.e., crack closure phenomenon, was found to be the cause.


2011 ◽  
Vol 63-64 ◽  
pp. 882-885 ◽  
Author(s):  
Xiao Li Zou

Since the fatigue crack propagation process from initial size till final fracture is affected by lots of random factors, it is difficult to evaluate the fatigue reliability. Based on reliability theory, the first order second moment method ( JC method) is adopted to analyze and compute the fatigue reliability. To account for the uncertainties of material resistance, the parameters in the deterministic fatigue crack growth rate equation and material fracture toughness are taken as random variables with Normal distribution or Log-Normal distribution. Consequently, the limit state equation of fatigue crack growth is derived. The fatigue reliability index at any moment is calculated iteratively through JC method. As a computation example, the curve of fatigue crack growth reliability index with time is presented.


Sign in / Sign up

Export Citation Format

Share Document