scholarly journals On Determination of the Effective Thermal Conductivity of a Bundle of Steel Bars Using the Krischer Model and Considering Thermal Radiation

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4378
Author(s):  
Rafał Wyczółkowski ◽  
Vazgen Bagdasaryan ◽  
Stanisław Szwaja

Cellular solid materials are commonly found in industrial applications. By definition, cellular solids are porous materials that are built of distinct cells. One of the groups of such materials contains metal foams. Another group of cellular metals contains bundles of steel bars, which create charges during the heat treatment of the bars. A granular structure connected by the lack of continuity of the solid phase is the main feature that distinguishes bundles from metal foams. The boundaries of the bundle cells are made of adjacent bars, with the internal region taking the form of an air cavity. In this paper, we discuss the possibility of using the Krischer model to determine the effective thermal conductivity of heat-treated bundles of steel bars based on the results of experimental tests and calculations. The model allows the kef coefficient to be precisely determined, although it requires the weighting parameter f to be carefully matched. It is shown that the value of f depends on the bar diameter, while its changes within the examined temperature range (25–800 °C) can be described using a third-degree polynomial. Determining the coefficients of such a polynomial is possible only when the effective thermal conductivity of the considered charge is known. Moreover, we analyze a simplified solution, whereby a constant value of the f coefficient is used for a given bar diameter; however, the kef values obtained thanks to this approach are encumbered with inaccuracy amounting to several dozen percentage points. The obtained results lead to the conclusion that the Krischer model cannot be used for the discussed case.

Author(s):  
Joerg Sauerhering ◽  
Oliver Reutter ◽  
Thomas Fend ◽  
Stefanie Angel ◽  
Robert Pitz-Paal

This article presents experimental results of the thermal conductivity of sintered metal foams, which were manufactured by the Slip Reaction Foam Sintering (SRFS) process. For the determination of the thermal conductivity, the Transient Plane Source Technique, also known as Hot Disk, was employed. The thermal conductivity of cellular solids differs from that of their corresponding dense material. Therefore, the various pore size level effects contributing to the thermal conductivity are accounted for by introducing an effective thermal conductivity λeff. The thermal conductivity of the strut material, a sintered packed bed, was determined up to 700°C and compared to similar materials. The thermal diffusivity could also be determined by the Laser-Flash method and compared to the Hot Disk values. For the foams, λeff was determined for a total porosity of 0.85 up to 700°C. In this article, a dependency between the porosity and λeff can be shown. The linear rise of λeff up to 400°C can be due to the increase of the thermal conductivity of the solid phase. The measurements are validated by comparison of the received specific heat with values received by thermogravimetry measurements. The general applicability of the measurement method to heterogeneous materials such as metal foams is discussed and an outlook about further investigations is given.


2015 ◽  
Vol 57 (10) ◽  
pp. 825-836 ◽  
Author(s):  
Alexander Martin Matz ◽  
Bettina Stefanie Mocker ◽  
Norbert Jost ◽  
Peter Krug

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Kan Ankang ◽  
Han Houde

Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.


Author(s):  
Ehsan Sadeghi ◽  
Scott Hsieh ◽  
Majid Bahrami

Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modeling of thermal-hydraulic systems incorporating metal foams. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foams and adjacent surfaces/layers. In the present study, a test bed that allows the separation of effective thermal conductivity and thermal contact resistance in metal foams is described. Measurements are performed in a vacuum under varying compressive loads using ERG Duocel aluminum foam samples with different porosities and pore densities. Also, a graphical method associated with a computer code is developed to demonstrate the distribution of contact spots and estimate the real contact area at the interface. Our results show that the porosity and the effective thermal conductivity remain unchanged with the variation of compression in the range of 0 to 2 MPa; but TCR decreases significantly with pressure due to an increase in the real contact area at the interface. Moreover, the ratio of real to nominal contact area varies between 0 to 0.013, depending upon the compressive force, porosity, and surface characteristics.


Author(s):  
Dmitriy Lazarev ◽  
Valeriy Artemov ◽  
Georgiy Yankov ◽  
Konstantin Minko

A three-dimensional mathematical model of unsteady heat and mass transfer in porous hydrogen-absorbing media, accounting for presence of “passive” gas admixtures, is developed. New technique for evaluation of effective thermal conductivity of porous medium, which consists of microparticles, is suggested. Effect of “passive” gas admixtures on heat and mass transfer and sorption rate in metal hydride reactor is analyzed. It is shown that decrease of effective thermal conductivity and partial hydrogen pressure under decrease of hydrogen concentration effect on the hydrogen sorption rate considerably. It is disclosed that an intensive 3D natural convection takes place in a gas volume of reactor under certain conditions. Numerical analysis of heat and mass transfer in metal-hydride reactor of hydrogen accumulation systems was done. Sorption of hydrogen in cylindrical reactors with external cooling and central supply of hydrogen are analyzed including reactors with finned active volume and tube-shell reactor with external and internal cooling cartridge matrix. Unsteady three dimensional temperature and concentration fields in solid phase are presented. Integral curves representing the dynamic of sorption and desorption are calculated. Data on efficiency of considered reactors are presented and compared.


Sign in / Sign up

Export Citation Format

Share Document