scholarly journals Microstructure and Hardness of Spark Plasma Sintered Inconel 625-NbC Composites for High-Temperature Applications

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4606
Author(s):  
Adrian Graboś ◽  
Jan Huebner ◽  
Paweł Rutkowski ◽  
Shenghua Zhang ◽  
Yen-Ling Kuo ◽  
...  

The study focuses on obtaining Inconel 625-NbC composites for high-temperature applications, e.g., jet engines, waste-to-energy combusting systems or gas engine turbines, and characterizing them in terms of their microstructure and hardness improvement. Synthesis was performed utilizing Spark Plasma Sintering (SPS) at 1150 °C under the load of 45 MPa in medium vacuum (under 10−3 MPa) for a total time of 60 min. Four sets of samples with different Inconel 625 to NbC weight ratios were prepared (5, 10, 20, and 30 wt.%), followed by a reference sample containing no ceramic reinforcement. Obtained materials were hot-rolled at 1150 °C with a 10% reduction step and later cut and polished to perform characterization utilizing scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) module and microhardness testing device equipped with Vickers indenter. Hardness was improved proportionally to NbC addition achieving an increase of up to 20% of reference values. Additional heat treatment was conducted on the hot-rolled samples at 1200 °C in an argon atmosphere to further observe the interaction between reinforcement and alloy. Their microstructure revealed the coarsening of precipitates within the metal matrix and partial reinforcement dissolution, which proved to be crucial to obtaining the highest quality composites with homogenous hardness improvement.

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2011 ◽  
Vol 696 ◽  
pp. 272-277 ◽  
Author(s):  
Toto Sudiro ◽  
Tomonori Sano ◽  
Akira Yamauchi ◽  
Shoji Kyo ◽  
Osamu Ishibashi ◽  
...  

The objective of this study is to develop an excellent corrosion resistant alloy for high temperature coating applications. The Si-containing alloys consisting of CoNiCrAlY and CrSi2 alloys with varying Si and Ni content respectively were prepared by spark plasma sintering (SPS) technique. The corrosion behavior of these alloys was investigated in the gas phase of air-(Na2SO4+25.7mass%NaCl) at elevated temperatures of 923, 1073 and 1273K. The results showed that CoNiCrAlY alloy with 30mass% Si content and CrSi2 alloy with 10mass% Ni content were the most effective materials for application in the gas phase of air-(Na2SO4+25.7mass%NaCl) due to the formation of protective Al2O3/SiO2 and SiO2 scale, respectively. Therefore, it is realized that CoNiCrAlY-30mass% Si and CrSi2-10mass% Si coating are very effective for improving of high temperature corrosion resistance of STBA21 steel.


2013 ◽  
Vol 39 (6) ◽  
pp. 6637-6646 ◽  
Author(s):  
Govindaraajan B. Yadhukulakrishnan ◽  
Sriharsha Karumuri ◽  
Arif Rahman ◽  
Raman P. Singh ◽  
A. Kaan Kalkan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document