scholarly journals Terahertz Sensor via Ultralow-Loss Dispersion-Flattened Polymer Optical Fiber: Design and Analysis

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4921
Author(s):  
Wanli Luo ◽  
Peng Jiang ◽  
Qiang Xu ◽  
Lei Cao ◽  
Adam Jones ◽  
...  

A novel cyclic olefin copolymer (COC)-based polymer optical fiber (POF) with a rectangular porous core is designed for terahertz (THz) sensing by the finite element method. The numerical simulations showed an ultrahigh relative sensitivity of 89.73% of the x-polarization mode at a frequency of 1.2 THz and under optimum design conditions. In addition to this, they showed an ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefringence of 1.91 × 10−3, a numerical aperture of 0.33, and an effective mode area of 1.65 × 105 μm2 was obtained for optimum design conditions. Moreover, the range dispersion variation was within 0.7 ± 0.41 ps/THz/cm, with the frequency range of 1.0–1.4 THz. Compared with the traditional sensor, the late-model sensor will have application value in THz sensing and communication.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaymaa Riyadh Tahhan ◽  
Hadeel K. Aljobouri

AbstractStimulant abuse enhances dopamine release, thereby causing increased excitation. Any extent of stimulant abuse can considerably harm the user. Thus, methods of detecting stimulants must be precise, accurate, and reliable. A novel terahertz (THz) photonic crystal fiber with a Topas substrate is designed and rigorously investigated for detecting liquid amphetamine, cocaine, and ketamine. The fiber structure has a pentagonal shape and comprises circular air holes in the core and cladding spatial extents. As shown in finite element simulation, the proposed fiber yields a high relative sensitivity of approximately 80 % when any of the liquid stimulants is infiltrated in the core air holes. At 1 THz operating frequency, the proposed fiber produces a large effective mode area, negligible confinement loss, and extremely low bending and effective material losses. Other THz waveguiding properties, such as core power fraction and total loss, are also studied. Lastly, a positive and negative 2 % fabrication tolerance is set to ensure seamless potential practical realization of the fiber.


2021 ◽  
Author(s):  
Hukam Singh ◽  
Dinesh Kumar Sharma ◽  
Saurabh Mani Tripathi

Abstract To sustain the pace with immense prominence, interest in low-loss terahertz (THz) waveguides increases due to their particular applications in the multidisciplinary arena. This paper narrates a novel solid-core polymer-based square lattice micro-structured optical fiber (SL-MOF) with circular air-holes for efficient propagation of THz waves. The anticipated model’s guiding attributes are described by employing the numerically efficient finite-element method (FEM) in conjunction with an auxiliary Ring Model. Numerical analysis of the model exhibits confinement loss of about ~ 10 -7 dB/cm and low effective material loss of ~ 0.19 cm -1 at the applied frequency of 1.0 THz. It is also demonstrated that the considered geometry furnishes low bending loss over the extended range of THz frequency. The relative sensitivity coefficient is evaluated in context for the targeted design parameters to enable the said model’s practical utility. Other nameworthy propagation characteristics, such as effective mode-index, power fraction, effective mode-area, numerical aperture, spot-size, and the beam divergence are also investigated. The improved outcomes are anticipated that the proposed configuration will be opened a new epoch in the THz waveband.


2021 ◽  
Author(s):  
Bibhatsu Kuiri ◽  
Bubai Dutta ◽  
Nilanjana Sarkar ◽  
Saikat Santra ◽  
Paulomi Mandal ◽  
...  

Abstract A newer and efficient solid core with air holes and ring based circular photonic crystal fiber (C-PCF) design is proposed, developed, and studied. The C-PCF structure with a ring core and three layers of air holes is developed to communicate terahertz frequency of the range of 1 THz to 3 THz. Finite element method (FEM) is used to optimize the position, shape and dimensions of air holes and refractive index (RI) of material for the proposed PCF design and check the efficiency to support different orbital angular momentum (OAM) modes for communication. Our novel designed C-PCF supports multiple stable modes with mode purity above 0.9. Confinement loss is in the range of 10-12 dB/cm, highest effective mode area in the order of 1 mm2 is achieved in the investigated study for 3 THz transmission. The study observes that the performance of PCF is strongly dependent on RI of core and cladding.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


Author(s):  
Thi Thuy Nguyen ◽  
Van Hung Dao

We examine the possibility of improving the nonlinear properties of photonic crystal fibers (PCFs) with As2Se3 substrates by creating a difference in the diameters of the air holes of the rings around the core. With the new design, all-normal dispersion properties, small effective mode area, high nonlinear coefficient, and low confinement loss were achieved in the long-wavelength range of 2.0–7.0 µm. The highest nonlinear coefficient is 4414.918 W-1.km-1 at 4.5 µm for the lattice constant (Ʌ) of 3.0 µm and the filling factor (d/Ʌ) of 0.85, while the lowest loss is 1.823´10-21 dB/cm with Ʌ = 3.5 µm and d/Ʌ = 0.8. Based on the numerical simulation results, the characteristics of two optimal structures have been analyzed in detail to guide the application in supercontinuum generation.


2020 ◽  
Vol 30 (3) ◽  
Author(s):  
Thuy Thi Nguyen ◽  
Trang Thi Gia Chu ◽  
Minh Van Le ◽  
Vu Quoc Tran ◽  
Khoa Quoc Doan ◽  
...  

The characteristics of PCF with various air hole diameters infiltrated with alcoholic liquids such as ethanol, methanol, propanol and butanol are numerically investigated. Based on the numerical results, we have analyzed and compare in detail the characteristics of these fibers including effective refractive index, effective mode area, dispersion and confinement loss for two case: the diameters and lattices constant of air holes are equal 1 µm and 5µm, 1.42µm and 3.26µm, respectively. The PCF infiltrated with ethanol and butanol showed better near zero flattened dispersion property at 1.42µm and 1µm wavelength respectively. With diameters and lattices constant of air holes equal 1.42μm and 3.26μm, the smallest dispersion of PCF filled with ethanol of 5.91075308 (ps.(nm.km)-1) and methanol of 19.3592474 (ps.(nm.km)-1). The highest ZDW of the PCF infiltrated with ethanol and methanol is 1.24604224µm and 1.22405714µm, respectively. Specially, the value of effective refractive index, effective mode area, dispersion and confinement loss decrease in an orderly manner from butanol, propanol, ethanol to methanol and all the alcoholic liquids’s cuvers of dispersion are flat and are very close to each other and near the zero dispersion curve in case the diameters and lattices constant of air holes are equal 1µm and 5µm. The proposed PCF shows a promising prospect in technology applications such as supercontinuum generation.


2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


Sign in / Sign up

Export Citation Format

Share Document