scholarly journals A Robust and Highly Precise Alternative against the Proliferation of Intestinal Carcinoma and Human Hepatocellular Carcinoma Cells Based on Lanthanum Strontium Manganite Nanoparticles

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4979
Author(s):  
Ali Omar Turky ◽  
Miral A. Abdelmoaz ◽  
Mahmoud M. Hessien ◽  
Ali M. Hassan ◽  
Mikhael Bechelany ◽  
...  

In this report, lanthanum strontium manganite at different Sr2+ ion concentrations, as well as Gd3+ or Sm3+ ion substituted La0.5−YMYSr0.5MnO3 (M = Gd and Sm, y = 0.2), have been purposefully tailored using a sol gel auto-combustion approach. XRD profiles confirmed the formation of a monoclinic perovskite phase. FE-SEM analysis displayed a spherical-like structure of the La0.8Sr0.2MnO3 and La0.3Gd0.2Sr0.2MnO3 samples. The particle size of the LSM samples was found to decrease with increased Sr2+ ion concentration. For the first time, different LSM concentrations were inspected for their cytotoxic activity against CACO-2 (intestinal carcinoma cells) and HepG-2 (human hepatocellular carcinoma cells). The cell viability for CACO-2 and HepG-2 was assayed and seen to decrease depending on the Sr2+ ion concentration. Half maximal inhibitory concentration IC50 of CACO-2 cell and HepG-2 cell inhibition was connected with Sr2+ ion ratio. Low IC50 was noticable at low Sr2+ ion content. Such results were correlated to the particle size and the morphology. Indeed, the IC50 of CACO-2 cell inhibition by LSM at a strontium content of 0.2 was 5.63 ± 0.42 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be = 25 ± 2.7 µg/mL. Meanwhile, the IC50 of HepG-2 cell inhibition by LSM at a strontium content of 0.2 was 6.73 ± 0.4 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be 31± 3.1 µg/mL. All LSM samples at different conditions were tested as antimicrobial agents towards fungi, Gram positive bacteria, and Gram negative bacteria. For instance, all LSM samples were found to be active towards Gram negative bacteria Escherichia coli, whereas some samples have presumed antimicrobial effect towards Gram negative bacteria Proteus vulgaris. Such results confirmed that LSM samples possessed cytotoxicity against CACO-2 and HepG-2 cells, and they could be considered to play a substantial role in pharmaceutical and therapeutic applications.

2020 ◽  
Vol 19 (18) ◽  
pp. 2197-2210 ◽  
Author(s):  
Sherien M. El-Daly ◽  
Shaimaa A. Gouhar ◽  
Amira M. Gamal-Eldeen ◽  
Fatma F. Abdel Hamid ◽  
Magdi N. Ashour ◽  
...  

Aim: The clinical application of cisplatin is limited by severe side effects associated with high applied doses. The synergistic effect of a combination treatment of a low dose of cisplatin with the natural alkaloid α-solanine on human hepatocellular carcinoma cells was evaluated. Methods: HepG2 cells were exposed to low doses of α-solanine and cisplatin, either independently or in combination. The efficiency of this treatment modality was evaluated by investigating cell growth inhibition, cell cycle arrest, and apoptosis enhancement. Results: α-solanine synergistically potentiated the effect of cisplatin on cell growth inhibition and significantly induced apoptosis. This synergistic effect was mediated by inducing cell cycle arrest at the G2/M phase, enhancing DNA fragmentation and increasing apoptosis through the activation of caspase 3/7 and/or elevating the expression of the death receptors DR4 and DR5. The induced apoptosis from this combination treatment was also mediated by reducing the expression of the anti-apoptotic mediators Bcl-2 and survivin, as well as by modulating the miR-21 expression. Conclusion: Our study provides strong evidence that a combination treatment of low doses of α-solanine and cisplatin exerts a synergistic anticancer effect and provides an effective treatment strategy against hepatocellular carcinoma.


Sign in / Sign up

Export Citation Format

Share Document