scholarly journals Investigation of Er3+ Ions Reinforced Zinc-Phosphate Glasses for Ionizing Radiation Shielding Applications

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6769
Author(s):  
Hesham M. H. Zakaly ◽  
Antoaneta Ene ◽  
Oyeleke I. Olarinoye ◽  
Samir Y. Marzouk ◽  
Shams H. Abdel-Hafez ◽  
...  

Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)−(16−x)CdO−(14ZnO)−(xEr2O3), (x = 1–6 mol%) . These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses’ density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC values of the glasses obtained via calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media.

2016 ◽  
Vol 872 ◽  
pp. 138-144
Author(s):  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao ◽  
Sunisa Sarachai ◽  
Narong Sangwaranatee ◽  
Nisakorn W. Sangwaranatee

The radiation parameters of barite sodium silicoborate glass (BaSO4:Na2O:SiO2:B2O3) with different concentration of barite (BaSO4) were studied. The mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) effective electron densities (Ne,eff) and half value layer (HVL) have been calculated by theoretical approach using WinXCom program in the energy range of 1 keV to 100 GeV. The results of these parameters are show graphically for total and partial photon interaction. It was found that the Zeff show discontinuous jumps related to absorption edges and dominance photoelectric effect at low energies, pair production have two types which are nuclear and electron field and its slightly increased with increasing photon energies. The variation of Ne,eff was related to the value of Zeff. The half value layer (HVL) of glasses were compared with commercial window and some standard shielding concretes which observed that the value of 20 mol% BaSO4 has lower than commercial window, ordinary and hematite-serpentine concretes. These results showed that glass sample is promising radiation shielding materials.


2022 ◽  
Author(s):  
Jamila S. Alzahrani ◽  
NAZIRUL NAZRIN SHAHROL NIDZAM ◽  
M. K. Halimah ◽  
K. Mahmoud ◽  
M. I. Sayyed ◽  
...  

Abstract The investigation involves a comprehensive study on the mechanical and shielding features of the zinc erbium tellurite glasses as a function of doped Ag2O content. The mechanical features are estimated for the examined glasses by utilizing the Makishima-Makinzie model. The results showed the mechanical moduli of Young (E), bulk (B), Shear (K), and longitudinal (L) increased with the increment of the Ag2O substitution ratio. Besides, the radiation shielding properties were also studied and discussed. Among the shielding parameters, the linear attenuation coefficient (LAC), half-value layer (HVL), the lead equivalent and transmission rate (TR) were estimated. The linear attenuation coefficient results illustrated that the TZEAg glasses are better compared to the commercial marketing glasses, especially TZEAg5 glasses. Doping of Ag2O content in zinc erbium tellurite glass improves its ability to attenuate the gamma photons. Also, this study revealed the effectiveness of the examined glasses on the fast neutron, where the fast neutron mass removal cross-section ∑R (cm2/g) computed theoretically. The results offered the maximum value of ∑R = 0.019 cm2/g attained for TZEAg1 while the minimum value ∑R = 0.01884 cm2/g for TZEAg5 glass.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3897
Author(s):  
Huseyin Ozan Tekin ◽  
Ghaida Bilal ◽  
Hesham M. H. Zakaly ◽  
Gokhan Kilic ◽  
Shams A. M. Issa ◽  
...  

This study aimed to investigate different types of glasses based on the 46V2O5-46P2O5-(8-x) B2O3-xCuO system in terms of their nuclear radiation shielding properties. Accordingly, five different CuO-doped vanadate glasses were investigated extensively to determine the necessary gamma shielding parameters along with effective conductivity at 300,000 and buildup factors. Phy-x PSD software was used for determination of these vital parameters. Furthermore, these parameters, such as half value layer, tenth value layer, and mean free path were investigated in a broad energy range between 0.015 and 15 MeV. The results revealed that the amount of CuO reinforced in each sample plays an essential role in determination of the shielding abilities of the samples. The sample with the highest CuO content had the highest linear attenuation coefficient and mass attenuation coefficient values. Additionally, the lowest mean free path, half value layer, and tenth value layer values were recorded for glass sample VPCu8. There was an inverse relation between the effective conductivity and effective atomic number and photon energy; that is, as energy increases, the effective conductivity and effective atomic number decreased rapidly, especially in the regions of low energy. Glass sample VPCu8 reported the highest values for both parameters. Moreover, glass sample VPCu8 had the lowest exposure buildup factor and energy absorption buildup factor values. Our findings showed that CuO-reinforced vanadate glass composition, namely 46V2O5-46P2O5-8CuO, with a glass density of 2.9235 g/cm3, was reported to have superior gamma ray attenuation properties. These results would be helpful for scientists in determining the most appropriate additive rare earth type, as well as the most appropriate glass composition, to offer shielding characteristics similar to those described above, taking into consideration the criteria for usage and the needs of the community. The results of this research will be useful to the scientific community in evaluating the prospective characteristics of CuO-doped glass systems and related glass compositions. CuO-doped glass systems and associated glass compositions have a wide range of properties.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1158
Author(s):  
Huseyin O. Tekin ◽  
Shams A. M. Issa ◽  
Gokhan Kilic ◽  
Hesham M. H. Zakaly ◽  
Mohamed M. Abuzaid ◽  
...  

In the current study, promising glass composites based on vanadium pentoxide (V2O5)-doped zinc borate (ZnB) were investigated in terms of their nuclear-radiation-shielding dynamics. The mass and linear attenuation coefficient, half-value layer, mean free path, tenth-value layer, effective atomic number, exposure-buildup factor, and energy-absorption-buildup factor were deeply simulated by using MCNPX code, Phy-X PSD code, and WinXcom to study the validation of ZBV1, ZBV2, ZBV3, and ZBV4 based on (100−x)(0.6ZnO-0.4B2O3)(x)(V2O5) (x = 1, 2, 3, 4 mol%) samples against ionizing radiation. The results showed that attenuation competencies of the studied glasses slightly changed while increasing the V2O5 content from 1 mol% to 4 mol%. The domination of ZnO concentration in the composition compared to B2O3 makes ZnO substitution with V2O5 more dominant, leading to a decrease in density. Since density has a significant role in the attenuation of gamma rays, a negative effect was observed. It can be concluded that the aforementioned substitution can negatively affect the shielding competencies of studied glasses.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1810
Author(s):  
Mengjie Li ◽  
Qilong Wang ◽  
Ji Xu ◽  
Jian Zhang ◽  
Zhiyang Qi ◽  
...  

Due to the high field enhancement factor and photon-absorption efficiency, carbon nanotubes (CNTs) have been widely used in optically induced field-emission as a cathode. Here, we report vertical carbon nanotube arrays (VCNTAs) that performed as high-density electron sources. A combination of high applied electric field and laser illumination made it possible to modulate the emission with laser pulses. When the bias electric field and laser power density increased, the emission process is sensitive to a power law of the laser intensity, which supports the emission mechanism of optically induced field emission followed by over-the-barrier emission. Furthermore, we determine a polarization dependence that exhibits a cosine behavior, which verifies the high possibility of optically induced field emission.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shams A. M. Issa ◽  
M. I. Sayyed ◽  
M. H. M. Zaid ◽  
K. A. Matori

The WinXCom program has been used to calculate the mass attenuation coefficients (μm), effective atomic numbers (Zeff), effective electron densities (Nel), half-value layer (HVL), and mean free path (MFP) in the energy range 1 keV–100 GeV for Gd3Al2Ga3O12Ce (GAGOC) and CaMoO4 (CMO) scintillator materials. The geometrical progression (G-P) method has been used to compute the exposure buildup factors (EBF) and gamma ray energy absorption (EABF) in the photon energy range 0.015–15 MeV and up to a 40 penetration depth (mfp). In addition, the values of the removal cross section for a fast neutron ∑R have been calculated. The computed data observes that GAGOC showed excellent γ-rays and neutrons sensing a response in the broad energy range. This work could be useful for nuclear radiation sensors, detectors, nuclear medicine applications (medical imaging and mammography), nuclear engineering, and space technology.


2021 ◽  
Vol 20 (02) ◽  
pp. 2150014
Author(s):  
Yuan Ou ◽  
Xuefei Yan ◽  
Yong Lv ◽  
Chunhui Niu

Nd[Formula: see text]/Yb[Formula: see text] co-doped lutetium-based glass sample and glass ceramic sample were prepared with the molar ratios of 52SiO2-8Na2CO3-16Al2O3-33NaF-3LuF3-0.15Yb2O3-0.03Nd2O3 by the high temperature melting method in 1400∘C. Under the excitation of 980[Formula: see text]nm diode laser, up-conversion luminescence spectrum of glass sample and glass ceramic sample was measured and three stronger up-conversion luminescence peaks at the wavelength of 552[Formula: see text]nm, 656[Formula: see text]nm and 668[Formula: see text]nm were observed, and up-conversion luminescence strengths of glass ceramic sample are higher than those of glass sample. The two-photon absorption of three emission peaks was determined by the fitting curve graph of up-conversion emission power and LD wording current. Absorption spectrum of glass ceramic sample was obtained and spectral strength parameters were computed as [Formula: see text][Formula: see text]cm2, [Formula: see text][Formula: see text]cm2, [Formula: see text][Formula: see text]cm2 by adopting Judd–Ofelt theory, and the root mean square deviation between the theoretical oscillator strength and the experimental oscillator strength were calculated as [Formula: see text]. Transition probability, branching ratio of 4F[Formula: see text] to its lower level and lifetime of 4F[Formula: see text] level of Nd[Formula: see text] ions were calculated, and the results indicate that the prepared Nd[Formula: see text]/Yb[Formula: see text] co-doped glass ceramic sample is a kind of good up-conversion material.


Sign in / Sign up

Export Citation Format

Share Document