scholarly journals Temperature Dependency on the Microscopic Mechanism in the Normal Direction of Wrought AZ31 Sheet under Dynamic Compressive Behavior

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7436
Author(s):  
Feng Zhang ◽  
Mingcheng Sun ◽  
Baojie Sun ◽  
Fengzheng Zhang ◽  
Yikui Bai ◽  
...  

In order to analyze the competitive relationship of different deformation mechanisms in wrought AZ31 magnesium alloy, the dynamic compressive experiments were conducted by a Split Hopkinson Pressure Bar (SHPB) apparatus and a resistance-heated furnace in the range of temperature between 20 and 350 °C at the strain rate of 1000 s−1. With the help of Electron Backscattered Diffraction (EBSD) observation, theoretical calculated Schmid Factor (SF), Critical Resolved Shear Stress (CRSS), and critical equivalent stress (σ0.2), the dynamic compressive deformation behavior and corresponding mechanism of wrought AZ31 magnesium alloy along the normal direction (ND) were revealed in the current study. The results demonstrate that the c-axis of grains are gradually reoriented parallel to the normal direction of wrought AZ31-ND sheet with the temperature increasing, except the dynamic recrystallization (DRX) mechanism was activated or grains grew up. The non-basal slip and 101¯2 tension twinning are respectively the predominant deformation mechanisms at lower temperatures (≤250 °C) and higher temperatures (≥250 °C). The predominant type of DRX mechanism of wrought AZ31-ND sheet is rotational dynamic recrystallization (RDRX), which is regarded as an obstacle for the kernel misorientation concentration region enhancement.

2011 ◽  
Vol 266 ◽  
pp. 233-236
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Fu Chi Wang

Dynamic mechanical properties of AZ31 magnesium alloy plate were carried out using split Hopkinson pressure bar (SHPB) with compression direction 0° and 90° from normal direction respectively. Optical microscopy (OM) and scanning electronic microscopy (SEM) were used for the observation of microstructure and fractograph. OM observations showed that cracks initiated and propagated along localized deformed bands consisted of twin intersection for 0° specimen, and that cracks initiated and propagated along localized transformed bands consisted of fine equiaxed dynamic recrystallized grains for 90° specimen. SEM observations showed that the fractograph exhibited typical ductile dimple fracture pattern for 0° and 90° specimens due to the thermal accumulation in localized bands caused by severe plastic deformation. The fracture mechanisms are anisotropic for AZ31 magnesium alloy plate, which contributed to the dynamic mechanical anisotropy of AZ31 magnesium alloy plate.


2016 ◽  
Vol 660 ◽  
pp. 102-107 ◽  
Author(s):  
Dewen Hou ◽  
Tianmo Liu ◽  
Huicong Chen ◽  
Dongfeng Shi ◽  
Chunhua Ran ◽  
...  

2007 ◽  
Vol 344 ◽  
pp. 31-38 ◽  
Author(s):  
Archimede Forcellese ◽  
Mohamad El Mehtedi ◽  
M. Simoncini ◽  
S. Spigarelli

The formability of AZ31 magnesium alloy sheets has been investigated in the temperature range varying from 200 to 300°C. Forming limit diagrams have been obtained by performing Nakazima-based tests. The different straining conditions have been investigated using sheet blanks with several length to width ratios. The forming limit curves have been related to the microstructural evolution occurring during deformation. The forming limit diagrams have shown a remarkable increase in formability with temperature that could be related to the occurrence of full dynamic recrystallization at 300°C.


2005 ◽  
Vol 495-497 ◽  
pp. 1633-1638 ◽  
Author(s):  
Chris H.J. Davies ◽  
Sang Bong Yi ◽  
Jan Bohlen ◽  
Karl Ulrich Kainer ◽  
Heinz Günter Brokmeier

The crystallographic response to deformation – texture evolution, internal elastic strain, and twin evolution – was measured for three load/orientation variants for AZ31 magnesium alloy extrudate tested in-situ in a synchrotron beamline. Specimens were loaded in tension parallel to the extrudate transverse direction, in compression along the same axis, and in compression parallel to the extrudate normal direction. The crystallographic responses are correlated with the mechanical behaviour of the extrudate.


2011 ◽  
Vol 686 ◽  
pp. 325-331 ◽  
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Zhi Wang

In order to investigate the microstructure evolution under high strain rate deformation of magnesium alloy, AZ31B magnesium alloy was impacted by Split Hopkinson Pressure Bar within the strain rates of 496s-1 to 2120s-1, then the specimens were observed by optical microscopy. The results show that when the strain rate are relatively low (496s-1-964s-1), the microstructure is predominated by high density of twinning, while increase the strain rate to 2120s-1 the volume fraction of twins is decreased. This implies that at relatively lower strain rate the deformation mechanism of AZ31B magnesium alloy under impact loading is twinning; increasing the strain rate the prismatic slip and pyramidal slip may be active besides twinning.


Sign in / Sign up

Export Citation Format

Share Document