Fracture Mechanisms Anisotropy of AZ31 Magnesium Plate under Impact Loading Condition

2011 ◽  
Vol 266 ◽  
pp. 233-236
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Fu Chi Wang

Dynamic mechanical properties of AZ31 magnesium alloy plate were carried out using split Hopkinson pressure bar (SHPB) with compression direction 0° and 90° from normal direction respectively. Optical microscopy (OM) and scanning electronic microscopy (SEM) were used for the observation of microstructure and fractograph. OM observations showed that cracks initiated and propagated along localized deformed bands consisted of twin intersection for 0° specimen, and that cracks initiated and propagated along localized transformed bands consisted of fine equiaxed dynamic recrystallized grains for 90° specimen. SEM observations showed that the fractograph exhibited typical ductile dimple fracture pattern for 0° and 90° specimens due to the thermal accumulation in localized bands caused by severe plastic deformation. The fracture mechanisms are anisotropic for AZ31 magnesium alloy plate, which contributed to the dynamic mechanical anisotropy of AZ31 magnesium alloy plate.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7298
Author(s):  
Shumeng Pang ◽  
Weijun Tao ◽  
Yingjing Liang ◽  
Shi Huan ◽  
Yijie Liu ◽  
...  

Although highly desirable, the experimental technology of the dynamic mechanical properties of materials under multiaxial impact loading is rarely explored. In this study, a true-biaxial split Hopkinson pressure bar device is developed to achieve the biaxial synchronous impact loading of a specimen. A symmetrical wedge-shaped, dual-wave bar is designed to decompose a single stress wave into two independent and symmetric stress waves that eventually form an orthogonal system and load the specimen synchronously. Furthermore, a combination of ground gaskets and lubricant is employed to eliminate the shear stress wave and separate the coupling of the shear and axial stress waves propagating in bars. Some confirmatory and applied tests are carried out, and the results show not only the feasibility of this modified device but also the dynamic mechanical characteristics of specimens under biaxial impact loading. This novel technique is readily implementable and also has good application potential in material mechanics testing.


2015 ◽  
Vol 752-753 ◽  
pp. 784-789 ◽  
Author(s):  
Eun Hye Kim ◽  
Davi Bastos Martins de Oliveira

Dynamic mechanical behavior of geomaterials has been widely observed in tunneling, oil and gas extraction, and blasting in civil and mining applications. It is important to understand how much energy is necessary to break or fail geomaterials to optimize the design of blasting patterns, oil and gas extractions, demolition, military defense, etc. However, there is little understanding for quantifying the required energy to break geomaterials under dynamic loading. More importantly, as typical geomaterials tend to hydrate, it is necessary to understand how much energy will be needed to break the structures under water saturation. Thus, in this study, we analyzed the consumed energy used to deform geomaterials using a split Hopkinson pressure bar (SHPB), enabling to measure stress and strain responses of geomaterials under dynamic loading condition of high strain rate (102–104/sec). Two different saturation levels (dry vs. fully saturation) in two sandstone samples having different pore sizes were tested under dynamic loading conditions. Our results demonstrate that dynamic mechanical strength (maximum stress) is greater in the dry geomaterials when compared with the saturated samples, and Young’s modulus (or maximum strain) can be a useful parameter to examine porosity effects between dry and saturated geomaterials on dynamic mechanical properties.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1489
Author(s):  
Jian Ma ◽  
Meini Yuan ◽  
Lirong Zheng ◽  
Zeyuan Wei ◽  
Kai Wang

The Ti–Al3Ti–Al laminated composites with different Al contents were prepared by vacuum hot pressing sintering technology. The effects of Al content on the dynamic mechanical properties of the composites were studied using the combination of Split Hopkinson Pressure Bar experiment and finite element analysis. The results showed that different Al content changes the fracture mode of the composites. The laminated composites without Al have higher brittleness and lower fracture strain. The Ti–Al3Ti–Al laminated composites containing 10–15%Al have better dynamic mechanical properties than those without Al, but the subsequent increase of Al content is not conducive to the improvement of strength. However, when the Al content in the specimen reaches 30%, the dynamic mechanical properties of the composites decrease, multi-crack phenomenon and relatively large strain occur, and the Al extruded from the layers fills the crack.


2013 ◽  
Vol 631-632 ◽  
pp. 383-387
Author(s):  
Lei Li ◽  
Jian Hua Liu ◽  
Yao Feng Ji

In order to study dynamic mechanical properties of float glass under blast and ballistic/fragmentation impacts, the curves of stress- strain are obtained in higher ranges by using the modified Split Hopkinson Pressure Bar (SHPB) techniques. Experimental results indicate that float glass is nonlinear elastic-brittle materials, and its dynamic curves of stress-strain are nonlinear and can be divided into three stages: elastic, nonlinear strengthening and stress drop. The dynamic Young’s modulus and the dynamic compressive strength of float glass increase with the increasing of strain rate. Finally, an explanation was given according to principle of energy equilibrium of Griffith.


2020 ◽  
Vol 14 (3) ◽  
pp. 7162-7169
Author(s):  
Muhamad Shahirul Mat Jusoh ◽  
Mohd Yazid Yahya ◽  
Haris Ahmad Israr Ahmad

Presently, the application of natural fibres widely gains attention from academia and industries as an alternative material in the composite system. The introduction of the hybrid composite using natural and synthetic fibres is extensively investigated on the static mechanical properties. However, the investigation on the high strain-rates effect is less reported due to the difficulty of the experimental set-up as well as the limitation of dynamic testing apparatus. The split Hopkinson pressure bar (SHPB) was utilised in this present study to characterise the dynamic mechanical properties of the hybrid composite between E-glass with jute fibres at three different strain rates of 755, 1363, and 2214 s−1. Results showed that the dynamic compression stress and strain of the tested samples significantly influenced by the value of strain rates applied. The E-glass/jute sample exhibited the strain-rate dependent behaviour, whereby the higher dynamic mechanical properties were recorded when the higher strain rates were imposed. The difference between maximum dynamic stress was 12.1 and 23.9% when the strain rates were increased from 755 to 1363 s−1 and 1363 to 2214 s−1, respectively. In terms of compressive strain, the maximum compressive strain was recorded when the lower strain rates were imposed during testing.


2014 ◽  
Vol 692 ◽  
pp. 179-186
Author(s):  
Wei Ping Bao ◽  
Zhi Ping Xiong ◽  
Fu Ming Wang ◽  
Jian Shu ◽  
Xue Ping Ren

Dynamic mechanical properties and microstructures of pure iron and Fe-30Mn-3Si-4Al TWIP (TWinning Induced Plasticity) steel were conducted by SHPB (Split-Hopkinson Pressure Bar), OM (Optical Microscopy) and TEM (Transmission Electron Microscope), at the strain rate ranging from 102 to 105 s-1 and at room temperature. The effect of high strain rate on the mechanical responses of pure iron and Fe-30Mn-3Si-4Al TWIP steel belonging to BCC (Body Centered Cubic) and FCC (Face Centered Cubic) structures respectively was evaluated. The comparison of deformation mechanism was analyzed between them and it concluded that dislocation gliding is a major deformation mechanism in pure iron with BCC structure and deformation twinning plays a significant role in Fe-30Mn-3Si-4Al TWIP steel with FCC structure.


2011 ◽  
Vol 99-100 ◽  
pp. 782-785 ◽  
Author(s):  
Bin Jia ◽  
Zheng Liang Li ◽  
Jun Lin Tao ◽  
Chun Tao Zhang

Based on the test by the split Hopkinson Pressure Bar (SHPB), in this papaer the research on the dynamic mechanical properties of concrete under high temperture has been conducted, the influence law of temperature and strain rate on the mechanical peoperties has been analyzed, and the dynamic stress-strain curves of concrete under high temperature have been obtained. Analysis indicate that the concrete strain rate hardening effect is coupled with the high temperature weakening effect. Therefore, on the basis of classical damage theoretical model, in accordance with the concrete high-temperature dynamic mechanical characteristics, a unified equation is established to describe the whole process of concrete dynamic stress-strain relationship under high temperature, which is well coincided with the test results.


Sign in / Sign up

Export Citation Format

Share Document