scholarly journals Correction: Răzvan et al. Selective Laser Sintering of PA 2200 for Hip Implant Applications: Finite Element Analysis, Process Optimization, Morphological and Mechanical Characterization. Materials 2021, 14, 4240

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 132
Author(s):  
Răzvan Păcurar ◽  
Petru Berce ◽  
Anna Petrilak ◽  
Ovidiu Nemeş ◽  
Cristina Ştefana Miron Borzan ◽  
...  

The authors wish to make the following correction to their paper [...]

Author(s):  
Jie Niu ◽  
Hui Leng Choo ◽  
Wei Sun

The availability of additive manufacturing technologies in particular the selective laser sintering process has enabled the fabrication of high strength, lightweight and complex cellular lattice structures. In this study, the effective mechanical properties of selective laser sintering produced periodic lattice structures were investigated. Three different types of lattice structures were designed by repeating three types of open-form unit cells consisting of triangular prism, square prism and hexagonal prism. A novel approach of creating the complex and conformable lattice structures using traditional modelling software such as Creo® proposed by the authors was used. Based on the predesigned lattice structures, finite element analysis was carried out to evaluate the mechanical properties of these structures. For the experimental study, nylon samples were printed using a plastic selective laser sintering system and tested using a universal testing machine. Finite element analysis results show that lattice structures with triangular prism perform better than the other two prisms in terms of Young’s modulus to relative density ratio. Tensile tests results show good conformance with the results obtained from finite element analysis.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4240
Author(s):  
Răzvan Păcurar ◽  
Petru Berce ◽  
Anna Petrilak ◽  
Ovidiu Nemeş ◽  
Cristina Ştefana Miron Borzan ◽  
...  

Polyamide 12 (PA 22000) is a well-known material and one of the most biocompatible materials tested and used to manufacture customized medical implants by selective laser sintering technology. To optimize the implants, several research activities were considered, starting with the design and manufacture of test samples made of PA 2200 by selective laser sintering (SLS) technology, with different processing parameters and part orientations. The obtained samples were subjected to compression tests and later to SEM analyses of the fractured zones, in which we determined the microstructural properties of the analyzed samples. Finally, an evaluation of the surface roughness of the material and the possibility of improving the surface roughness of the realized parts using finite element analysis to determine the optimum contact pressure between the component made of PA 2200 by SLS and the component made of TiAl6V4 by SLM was performed.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987456 ◽  
Author(s):  
Dyi-Cheng Chen ◽  
Li Cheng-Yu ◽  
Yu-Yu Lai

With the advancement of technology, aiming for achieving a greater lightness and smaller size of 3C products, parts processing technology not only needs to explore the basic scientific theory of materials but also needs to discuss the process of deep drawing numerical and the plastic deformation. This study is based on the square shape of the deep drawing numerical simulation, and aluminum alloy plastic flow stress was input into the finite element method for simulation of plastic deformation in the aluminum alloy friction, mold clamping force, and frequency, as well as amplitude in the influence of forming mechanism and the drawing ratio of aluminum alloy. Finite element analysis software has the function of grid automatic rebuild, which can rebuild the broken grid in the analysis into a complete grid shape, which can avoid the divergence caused by numerical calculation in the analysis process. The greater the obtained error value, the best plastic parameters can be found.


Sign in / Sign up

Export Citation Format

Share Document