scholarly journals An Analytical Approach for Computing the Coefficient of Refrigeration Performance in Giant Inverse Magnetocaloric Materials

Magnetism ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 10-30
Author(s):  
Nickolaus M. Bruno ◽  
Matthew R. Phillips

An analytical approach for computing the coefficient of refrigeration performance (CRP) was described for materials that exhibited a giant inverse magnetocaloric effect (MCE), and their governing thermodynamics were reviewed. The approach defines the magnetic work input using thermodynamic relationships rather than isothermal magnetization data discretized from the literature. The CRP was computed for only cyclically reversible temperature and entropy changes in materials that exhibited thermal hysteresis by placing a limit on their operating temperature in a thermodynamic cycle. The analytical CRP serves to link meaningful material properties in first-order MCE refrigerants to their potential work and efficiency and can be employed as a metric to compare the behaviors of dissimilar alloy compositions or for materials design. We found that an optimum in the CRP may exist that depends on the applied field level and Clausius–Clapeyron (CC) slope. Moreover, through a large literature review of NiMn-based materials, we note that NiMn(In/Sn) alloys offer the most promising materials properties for applications within the bounds of the developed framework.

2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1039
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

First Order Reversal Curve (FORC) distributions of magnetic materials are a well-known tool to extract information about hysteresis sources and magnetic interactions, or to fingerprint them. Recently, a temperature variant of this analysis technique (Temperature-FORC, TFORC) has been used for the analysis of the thermal hysteresis associated with first-order magnetocaloric materials. However, the theory supporting the interpretation of the diagrams is still lacking, limiting TFORC to a fingerprinting technique so far. This work is a first approach to correlate the modeling of first-order phase transitions, using the Bean–Rodbell model combined with a phenomenological transformation mechanism, with the features observed in experimental TFORC distributions of magnetocaloric materials. The different characteristics of the transformations, e.g., transition temperatures, symmetry, temperature range, etc., are correlated to distinct features of the distributions. We show a catalogue of characteristic TFORC distributions for magnetocaloric materials that exhibit some of the features observed experimentally.


2019 ◽  
Author(s):  
Taufiq Khairi Ahmad Khairuddin ◽  
Nurhazirah Mohamad Yunos ◽  
Sharidan Shafie

2005 ◽  
Vol 71 (1) ◽  
Author(s):  
Radu Tanasa ◽  
Cristian Enachescu ◽  
Alexandru Stancu ◽  
Jorge Linares ◽  
Epiphane Codjovi ◽  
...  

2005 ◽  
Vol 72 (5) ◽  
Author(s):  
Cristian Enachescu ◽  
Radu Tanasa ◽  
Alexandru Stancu ◽  
Francois Varret ◽  
Jorge Linares ◽  
...  

2004 ◽  
Vol 04 (03) ◽  
pp. 313-336 ◽  
Author(s):  
ABDULLATEEF M. AL-KHALEEFI

Based on the first-order shear deformation shell theory, an analytical approach is developed to predict the thermal buckling response of an all-edge clamped cylindrical panel. The analytical approach adopts a double Fourier solution method suitable for cylindrical panels. The present solutions are compared with the finite element solutions obtained using ANSYS. The effects of various dimensional parameters are included in the study.


1999 ◽  
Vol 604 ◽  
Author(s):  
Chi-Shun Tu ◽  
V.H. Schmiidt ◽  
C.-H. Yeh ◽  
L.-F. Chen ◽  
C.-L. Tsai

AbstractBoth the longitudinal (LA) Brillouin back-scattering spectra and dielectric permittivity along the [001] direction have been measured as a function of temperature for a relaxor ferroelectric single crystal (PbMg1/3Nb2/3O3)0.68(PbTiO3)0.32 (PMN-32%PT). A sharp ferroelectric phase transition (which is associated with a Landau-Khalatnikov-like phonon damping maximum) was observed near 445 K. As temperature increases, a diffuse phase transition was detected near 280 K. In addition, the nature of the thermal hysteresis for the dielectric permittivity confirms that these transitions (near 280 and 445 K for heating procedure) are diffuse first-order and first-order, It respectively. The dielectric data prove the existence of an electric dipolar relaxation process below 300 K.


Sign in / Sign up

Export Citation Format

Share Document