Magnetism
Latest Publications


TOTAL DOCUMENTS

7
(FIVE YEARS 7)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-8724

Magnetism ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 10-30
Author(s):  
Nickolaus M. Bruno ◽  
Matthew R. Phillips

An analytical approach for computing the coefficient of refrigeration performance (CRP) was described for materials that exhibited a giant inverse magnetocaloric effect (MCE), and their governing thermodynamics were reviewed. The approach defines the magnetic work input using thermodynamic relationships rather than isothermal magnetization data discretized from the literature. The CRP was computed for only cyclically reversible temperature and entropy changes in materials that exhibited thermal hysteresis by placing a limit on their operating temperature in a thermodynamic cycle. The analytical CRP serves to link meaningful material properties in first-order MCE refrigerants to their potential work and efficiency and can be employed as a metric to compare the behaviors of dissimilar alloy compositions or for materials design. We found that an optimum in the CRP may exist that depends on the applied field level and Clausius–Clapeyron (CC) slope. Moreover, through a large literature review of NiMn-based materials, we note that NiMn(In/Sn) alloys offer the most promising materials properties for applications within the bounds of the developed framework.


Magnetism ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Evgeniy K. Petrov ◽  
Vladimir M. Kuznetsov ◽  
Sergey V. Eremeev

Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation of these quantum effects was achieved earlier in the films with modulated magnetic doping. On the other hand, the molecular-beam-epitaxy technique allowing the growth of stoichiometric magnetic van der Waals blocks in combination with blocks of topological insulator was developed. This approach should allow the construction of modulated heterostructures with the desired architecture. In the present paper, based on the first-principles calculations, we study the electronic structure of symmetric thin film heterostructures composed of magnetic MnBi2Se4 blocks (septuple layers, SLs) and blocks of Bi2Se3 TI (quintuple layers, QLs) in dependence on the depth of the magnetic SLs relative to the film surface and the TI spacer between them. Among considered heterostructures we have revealed those characterized by nontrivial band topology.


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 60-69
Author(s):  
Noshin Raisa ◽  
Yuki Gao ◽  
Mahindra Ganesh ◽  
Maryam Ravan ◽  
Reza K. Amineh

In this paper, a unique approach to the imaging of non-metallic media using capacitive sensing is presented. By using customized sensor plates in single-ended and differential configurations, responses to hidden objects can be captured over a cylindrical aperture surrounding the inspected medium. Then, by processing the acquired data using a novel imaging technique based on the convolution theory, Fourier and inverse Fourier transforms, and exact low resolution electromagnetic tomography (eLORETA), images are reconstructed over multiple radial depths using the acquired sensor data. Imaging hidden objects over multiple depths has wide range of applications, from biomedical imaging to nondestructive testing of the materials. Performance of the proposed imaging technique is demonstrated via experimental results.


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 58-59
Author(s):  
Israa Medlej ◽  
Xichao Zhang ◽  
Roberto Zivieri

Topological spin textures have been an extremely hot topic since their first experimental observation in 2009 [...]


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 37-57
Author(s):  
Uta Rösel ◽  
Dietmar Drummer

Polymer bonded magnets based on thermoplastics are economically produced by the injection molding process for applications in sensor and drive technology. Especially the lack of orientation in the edge layer, as well as the chemical resistance and the creep behavior limit the possible implementations of thermoplastic based polymer bonded magnets. However, thermoset based polymer bonded magnets have the opportunity to expand the applications by complying with the demands of the chemical industry or pump systems through to improved chemical and thermal resistance, viscosity and creep behavior of thermosets. This paper investigates the influence of hard magnetic particles on the flow and curing behavior of highly filled thermoset compounds based on an epoxy resin. The basic understanding of the behavior of those highly filled hard magnetic thermoset systems is essential for the fabrication of polymer bonded magnets based on thermosets in the injection molding process. It is shown that several factors like the crystal structure, the particle shape and size, as well as the thermal conductivity and the adherence between filler and matrix influence the flow and curing behavior of highly filled thermoset compounds based on epoxy resin. However, these influencing factors can be applied to any filler system with respect to a high filler amount in a thermoset compound, as they are based on the material behavior of particles. Further, the impact of the flow and curing behavior on the magnetic properties of polymer bonded magnets based on thermosets is shown. With that, the correlation between material based factors and magnetic properties within thermosets are portrayed.


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 22-36
Author(s):  
Ahmed Maher Henaish ◽  
Maha Mostafa ◽  
Ilya Weinstein ◽  
Osama Hemeda ◽  
Basant Salem

Ferroelectric samples Sr1−xBaxTiO3 (BST), where x = 0, 0.2, 0.4, 0.6, 0.8 and 1, were prepared using the tartrate precursor method and annealed at 1200 °C for 2 h. X-ray diffraction, “XRD”, pattern analysis verified the structure phase. The crystallite size of the SrTiO3 phase was calculated to be 83.6 nm, and for the TiO2 phase it was 72.25 nm. The TEM images showed that the crystallites were agglomerated, due to their nanosize nature. The AC resistivity was measured as temperature dependence with different frequencies 1 kHz and 10 kHz. The resistivity was decreased by raising the frequency. The dielectric properties were measured as the temperature dependence at two frequencies, 1 kHz and 10 kHz. The maximum amount of dielectric constant corresponded to the Curie temperature and the transformation from ferroelectric to paraelectric at 1 kHz was sharp at 10 kHz. Polarization–electric field hysteresis loops for BST samples were measured using a Sawer–Tawer modified circuit. It was shown that the polarization decreased with increasing temperature for all samples.


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-2
Author(s):  
Gerardo F. Goya

Magnetism has been entangled with human progress since the first realization by Chinese civilization of the attractive interactions between loadstone and iron, which they attributed to a similar qi (vital force) [...]


Sign in / Sign up

Export Citation Format

Share Document