scholarly journals Numerical Computation and Analysis of Electromagnetic Field in Magnetic Suspension and Balance System

2021 ◽  
Vol 7 (3) ◽  
pp. 33
Author(s):  
Mingda Zhai ◽  
Wentao Xia ◽  
Zhiqiang Long ◽  
Fengshan Dou

The magnetic suspension wind tunnel balance (MSBS) is an entirely new device for aerodynamic measurement, and it makes the best of the electromagnetic force to suspend the aircraft model in the wind tunnel without contact. Compared with conventional wind tunnel balance, it absolutely abandons the model support and airflow interference. Therefore, the aerodynamic measurement environment is more authentic and the aerodynamic measurement results are more accurate. The electromagnetic field in MSBS plays a major role in bearing the force of wind. The numerical computation and finite element numerical analysis are performed to investigate key factors of electromagnetic force under different conditions. The calculation results based on finite element method (FEM) have revealed that the diameter and the spacing of of the axial coil, the number of segments and the pitch angle of the suspension model are key factors of electromagnetic force. Based on the above key factors, the structure of the magnetic suspension balance is optimized to maximize the electromagnetic force under multiple constraints.

2019 ◽  
Vol 89 (21-22) ◽  
pp. 4620-4631
Author(s):  
Xu Qiao ◽  
Mei Shunqi ◽  
Yan Xiaoyu ◽  
Md Mazharul Islam ◽  
Chen Zhen ◽  
...  

Weft insertion based on electromagnetic launch technology is a novel and very promising approach for super broad-width (6–12 m) (SBW) looms. There are considerable challenges involved in designing such a system, including analyzing the electromagnetic field while incorporating the effect of a clip weft device, and accurately calculating the electromagnetic and motion parameters of the weft insertion mechanism. In this study, an electromagnetic launch, non-striking weft insertion method for an SBW loom is proposed. The electromagnetic field is analyzed with the finite element method and includes the effect of a clip weft device. Simulation of the motion, analysis of the maximum flight speed of the clip weft device and the work done by electromagnetic force are presented. We also describe an experimental model for electromagnetic launch weft insertion and calculate the electromagnetic force required for weft insertion, using analytical methods and numerical finite element methods. Comparison of the results with measured values shows that this electromagnetic launch weft insertion system has good flexibility. In addition, the weft insertion speed required for different width looms can be obtained by changing the current of the coil or the coil stage number of the launching system.


2013 ◽  
Vol 416-417 ◽  
pp. 428-432
Author(s):  
Li Shan ◽  
Xiao Wei Cheng ◽  
Yong Fang ◽  
Xiao Hua Bao

This paper investigates the vibration which caused by electromagnetic on the stator end-winding of the large dry submersible motor. Firstly, the electromagnetic field which included transition state and steady state is researched by 3-D FEM. Secondly, the electromagnetic force which lead to vibrations of end-winding is calculated by numerical method, it can be obtained that where endured the largest force density along the slant part of end-winding. Finally, the radial displacement and the axial displacement of the slant part which caused by vibrations is studied, the analysis results show that the axial displacement is larger than the amplitude of radial displacement. It indicates that the slant part of end-winding will be more easily damaged at axial direction than radial direction.


1995 ◽  
Author(s):  
L. Polansky ◽  
W. Matich ◽  
J. T. Kutney

1988 ◽  
Vol 24 (6) ◽  
pp. 3126-3128 ◽  
Author(s):  
M.D.N. Lunney ◽  
R.B. Moore ◽  
J.P. Webb ◽  
B. Forghani

Sign in / Sign up

Export Citation Format

Share Document