Research on electromagnetic force wave analysis and vibration characteristics of permanent magnet synchronous motor based on finite element simulation

Author(s):  
Yu Bo ◽  
Song Li ◽  
Gao Hu
2018 ◽  
Vol 138 (9) ◽  
pp. 730-738
Author(s):  
Ryoichi Takahata ◽  
Shinichi Wakui ◽  
Kenji Miyata ◽  
Keiji Noma ◽  
Masaharu Senoo

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Miaomiao Li ◽  
Zhuo Li ◽  
Liangliang Ma ◽  
Rupeng Zhu ◽  
Xizhi Ma

In this study, we evaluated the effect of changing supports’ position on the vibration characteristics of a three-support flexible rotor shafting. This dependency was first analyzed using a finite element simulation and then backed up with experimental investigations. By computing a simplified rotor shafting model, we found that the first-order bending vibration in a forward whirl mode is the most relevant deforming mode. Hence, the effect of the supports’ positions on this vibration was intensively investigated using simulations and verified experimentally with a house-made shafting rotor system. The results demonstrated that the interaction between different supports can influence the overall vibration deformation and that the position of the support closer to the rotor has the greatest influence.


2021 ◽  
Vol 18 (1) ◽  
pp. 26-35
Author(s):  
Mohamed ELADAWY ◽  
Ibrahim Metwally

This paper proposes an improvement for the dynamic performance of presaturated stacked permanent magnet biased three-phase fault current limiter (PMFCL) through COMSOL finite element simulation. The nonlinear demagnetization behavior of the permanent magnet, especially in the upper part of the B-H curve with negative magnetic field intensity, has been modelled through the Jiles-Atherton method. This enables a realistic representation of the PMFCL dynamic behavior throughout its entire operations of pre-fault, fault and fault removal, respectively. The experimental measurements have been considered to validate the trends of the simulation outcomes during the entire operation of PMFCL. Extensive finite element simulation shows that the stacked design of PMFCL can increase the capability of fault current limiting with proper selection of the number and arrangement of the AC coils around the iron core (soft magnet). Results reveal that the division of AC coils into series differential connected subcoils, with an even number, can increase the limiting capability with increasing the AC coil number of turns, without exceeding the permissible tolerances of voltage drop and power losses. Moreover, this stacked design is subjected to parametric investigation for different fault types, either symmetrical or unsymmetrical, or even when changing the fault current peak value.


Sign in / Sign up

Export Citation Format

Share Document