scholarly journals Canopy Height Estimation at Landsat Resolution Using Convolutional Neural Networks

2020 ◽  
Vol 2 (1) ◽  
pp. 23-36
Author(s):  
Syed Aamir Ali Shah ◽  
Muhammad Asif Manzoor ◽  
Abdul Bais

Forest structure estimation is very important in geological, ecological and environmental studies. It provides the basis for the carbon stock estimation and effective means of sequestration of carbon sources and sinks. Multiple parameters are used to estimate the forest structure like above ground biomass, leaf area index and diameter at breast height. Among all these parameters, vegetation height has unique standing. In addition to forest structure estimation it provides the insight into long term historical changes and the estimates of stand age of the forests as well. There are multiple techniques available to estimate the canopy height. Light detection and ranging (LiDAR) based methods, being the accurate and useful ones, are very expensive to obtain and have no global coverage. There is a need to establish a mechanism to estimate the canopy height using freely available satellite imagery like Landsat images. Multiple studies are available which contribute in this area. The majority use Landsat images with random forest models. Although random forest based models are widely used in remote sensing applications, they lack the ability to utilize the spatial association of neighboring pixels in modeling process. In this research work, we define Convolutional Neural Network based model and analyze that model for three test configurations. We replicate the random forest based setup of Grant et al., which is a similar state-of-the-art study, and compare our results and show that the convolutional neural networks (CNN) based models not only capture the spatial association of neighboring pixels but also outperform the state-of-the-art.

Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2017 ◽  
Vol 25 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Yuan Luo ◽  
Yu Cheng ◽  
Özlem Uzuner ◽  
Peter Szolovits ◽  
Justin Starren

Abstract We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes. Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models, relations between 2 concepts are identified by simultaneously learning separate representations for text segments in a sentence: preceding, concept1, middle, concept2, and succeeding. We evaluate Seg-CNN on the i2b2/VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem–treatment relations, 0.820 for medical problem–test relations, and 0.702 for medical problem–medical problem relations. We demonstrate the benefits of learning segment-level representations. We show that medical domain word embeddings help improve relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying medical relations, as they show state-of-the-art performance while requiring no manual feature engineering.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 641 ◽  
Author(s):  
Miguel Rivera-Acosta ◽  
Susana Ortega-Cisneros ◽  
Jorge Rivera

This paper presents a platform that automatically generates custom hardware accelerators for convolutional neural networks (CNNs) implemented in field-programmable gate array (FPGA) devices. It includes a user interface for configuring and managing these accelerators. The herein-presented platform can perform all the processes necessary to design and test CNN accelerators from the CNN architecture description at both layer and internal parameter levels, training the desired architecture with any dataset and generating the configuration files required by the platform. With these files, it can synthesize the register-transfer level (RTL) and program the customized CNN accelerator into the FPGA device for testing, making it possible to generate custom CNN accelerators quickly and easily. All processes save the CNN architecture description are fully automatized and carried out by the platform, which manages third-party software to train the CNN and synthesize and program the generated RTL. The platform has been tested with the implementation of some of the CNN architectures found in the state-of-the-art for freely available datasets such as MNIST, CIFAR-10, and STL-10.


2019 ◽  
Vol 24 (12) ◽  
pp. 9243-9256
Author(s):  
Jordan J. Bird ◽  
Anikó Ekárt ◽  
Diego R. Faria

Abstract In this work, we argue that the implications of pseudorandom and quantum-random number generators (PRNG and QRNG) inexplicably affect the performances and behaviours of various machine learning models that require a random input. These implications are yet to be explored in soft computing until this work. We use a CPU and a QPU to generate random numbers for multiple machine learning techniques. Random numbers are employed in the random initial weight distributions of dense and convolutional neural networks, in which results show a profound difference in learning patterns for the two. In 50 dense neural networks (25 PRNG/25 QRNG), QRNG increases over PRNG for accent classification at + 0.1%, and QRNG exceeded PRNG for mental state EEG classification by + 2.82%. In 50 convolutional neural networks (25 PRNG/25 QRNG), the MNIST and CIFAR-10 problems are benchmarked, and in MNIST the QRNG experiences a higher starting accuracy than the PRNG but ultimately only exceeds it by 0.02%. In CIFAR-10, the QRNG outperforms PRNG by + 0.92%. The n-random split of a Random Tree is enhanced towards and new Quantum Random Tree (QRT) model, which has differing classification abilities to its classical counterpart, 200 trees are trained and compared (100 PRNG/100 QRNG). Using the accent and EEG classification data sets, a QRT seemed inferior to a RT as it performed on average worse by − 0.12%. This pattern is also seen in the EEG classification problem, where a QRT performs worse than a RT by − 0.28%. Finally, the QRT is ensembled into a Quantum Random Forest (QRF), which also has a noticeable effect when compared to the standard Random Forest (RF). Ten to 100 ensembles of trees are benchmarked for the accent and EEG classification problems. In accent classification, the best RF (100 RT) outperforms the best QRF (100 QRF) by 0.14% accuracy. In EEG classification, the best RF (100 RT) outperforms the best QRF (100 QRT) by 0.08% but is extremely more complex, requiring twice the amount of trees in committee. All differences are observed to be situationally positive or negative and thus are likely data dependent in their observed functional behaviour.


2019 ◽  
Vol 9 (11) ◽  
pp. 2347 ◽  
Author(s):  
Hannah Kim ◽  
Young-Seob Jeong

As the number of textual data is exponentially increasing, it becomes more important to develop models to analyze the text data automatically. The texts may contain various labels such as gender, age, country, sentiment, and so forth. Using such labels may bring benefits to some industrial fields, so many studies of text classification have appeared. Recently, the Convolutional Neural Network (CNN) has been adopted for the task of text classification and has shown quite successful results. In this paper, we propose convolutional neural networks for the task of sentiment classification. Through experiments with three well-known datasets, we show that employing consecutive convolutional layers is effective for relatively longer texts, and our networks are better than other state-of-the-art deep learning models.


Sign in / Sign up

Export Citation Format

Share Document