scholarly journals Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials

Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 114 ◽  
Author(s):  
George Livadiotis
2020 ◽  
Vol 140 (12) ◽  
pp. 832-841
Author(s):  
Lijun Liu ◽  
Kazuaki Sekiya ◽  
Masao Ogino ◽  
Koki Masui

2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


1998 ◽  
Vol 63 (8) ◽  
pp. 1187-1201 ◽  
Author(s):  
Jaroslav Zamastil ◽  
Lubomír Skála ◽  
Petr Pančoška ◽  
Oldřich Bílek

Using the semiclassical approach for the description of the propagation of the electromagnetic waves in optically active isotropic media we derive a new formula for the circular dichroism parameter. The theory is based on the idea of the time damped electromagnetic wave interacting with the molecules of the sample. In this theory, the Lambert-Beer law need not be taken as an empirical law, however, it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell equations.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter examines solutions to the Maxwell equations in a vacuum: monochromatic plane waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which is the principle upon which particle detection is based). A plane wave is a solution of the vacuum Maxwell equations which depends on only one of the Cartesian spatial coordinates. The monochromatic plane waves form a basis (in the sense of distributions, because they are not square-integrable) in which any solution of the vacuum Maxwell equations can be expanded. The chapter concludes by giving the conditions for the geometrical optics limit. It also establishes the connection between electromagnetic waves and the kinematic description of light discussed in Book 1.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Pietro Aiena ◽  
Fabio Burderi ◽  
Salvatore Triolo

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.


Sign in / Sign up

Export Citation Format

Share Document